Safitri, Maharani (2020) Penyelesaian Permasalahan Non Linear dengan Pendekatan Linearisasi Dua Fase. Bachelor/Skripsi thesis, Universitas Negeri Padang.
![B1_2_MAHARANI_SAFITRI_16030044_1235_2020.pdf [thumbnail of B1_2_MAHARANI_SAFITRI_16030044_1235_2020.pdf]](https://repository.unp.ac.id/style/images/fileicons/text.png)
B1_2_MAHARANI_SAFITRI_16030044_1235_2020.pdf
Download (1MB)
Abstract
Optimasi merupakan suatu teknik yang digunakan untuk mendapatkan solusi
optimal dalam suatu permasalahan. Suatu masalah optimasi nonlinear dengan bentuk
fungsi objektif nonlinear sederhana dapat diselesaikan dengan cara analitik
sedangkan untuk masalah optimasi dengan fungsi objektif rumit dan sulit
diselesaikan secara analitik dapat diselesaikan dengan numerik. Salah satu metode
numerik yang digunakan adalah metode pendekatan linearisasi dua fase. Penelitian ini merupakan penelitian dasar (teoritis) dengan menggunakan teori
yang relevan berdasarkan studi kepustakaan untuk penyelesaian permasalahan
nonlinear khususnya metode pendekatan linearisasi dua fase . Metode ini merupakan
metode pengembangan untuk menyelesaikan permasalahan nonlinear tak berkendala
maupun permasalahan nonlinear berkendala. Proses penyelesaian nonlinear dimulai dengan mengubah semua kendala
pertidaksamaan menjadi persamaan dan menentukan nilai X0 yang memenuhi
persamaan fungsi objektif. Untuk mendapatkan solusi optimum lakukan ekspansi
deret taylor terhadap X0 dan untuk mendapatkan residu terkecil substitusikan solusi ke
kandala awal dan lakukan ekspansi deret Maclaurin terhadap kendala baru
Item Type: | Thesis (Bachelor/Skripsi) |
---|---|
Uncontrolled Keywords: | PERMASALAHAN LINEAR, PERMASALAHAN NON LINEAR, PENDEKATAN LINEAR, DERET TAYLOR, DERET MCLAURIN |
Subjects: | Q Science > QA Mathematics |
Divisions: | Fakultas Matematika dan Ilmu Pengetahuan Alam > Matematika-S1 |
Depositing User: | Dina Aulia Sari S.IP |
Date Deposited: | 24 Apr 2025 05:29 |
Last Modified: | 24 Apr 2025 05:29 |
URI: | https://repository.unp.ac.id/id/eprint/7604 |