PENGEMBANGAN MODUL KIMIA BERBASIS DISCOVERY LEARNING DENGAN PENDEKATAN SCIENTIFIC PADA MATERI LARUTAN ELEKTROLIT DAN NON-ELEKTROLIT KELAS X SMA

TESIS

Ditulis untuk memenuhi sebagaian persyaratan dalam mendapatkan gelar Magister Pendidikan

OLEH
RANI SUHARNI
NIM.15176005

Pembimbing I

Pembimbing II

Prof. Dr. Hj. Elizar, M.Pd

Dr. Hardeli, M.Si

PROGRAM STUDI MAGISTER PENDIDIKAN KIMIA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI PADANG 2017

ABSTRACT

Rani Suharni. 2017. "Developing of Chemistry Module based on Discovery Learning with Scientific Approach in Electrolyte Solution for Students of Senior High School." Thesis. Graduate Program of Padang State University.

Scientific Approach is a learning process, designed to make the students contruct their knowledge actively through stages of scientific method. Using the scientific approach in learning process can be done by using a learning model. One of that learning model is discovery learning. Discovery learning is a leaning model for finding the valuable things in learning through various activities, like observation, experince, and reasoning. That activities are demanding direct involvement of students to find their knowledge by them self. In fact, students involvement to find and construct the knowledge still not maximum. It's because the available learning module still not suit scientific approach. One of solution is developing of chemistry module based on discovery learning with scientific approach in electrolyte solution. Purpose of this development is to produce a valid, a practice, and a effective chemistry module.

The developing process of this chemistry module use the Plomp Model with three main stages. The stage of this module are preliminary research, prototyping stage, and the assasment stage. Subject of this research were the first grade of Senior High School students (SMAN 2 Padang). Validation were done by the expert of chemistry education and also chemistry teacher. Practicality of this chemistry module can be seen by result of questionnare. The effectiveness can be seen by the result of learning student who use chemistry learning module in their learning process.

The result of data analysis indicate that the chemistry module was valid in content, construct, and presentation. Chemistry module also has a good practicality level and also accordance with the available time. This chemistry module was also effective, because it can help the students to understand the content of the learning material. That's proved by the result of learning student. Based on the result can conclude that chemistry module based on discovery learning and scientific approach in electrolyte solution for first grade of senior high school students were valid, practice, and effective.

Keywords: discovery learning, scientific approach, chemistry module, plomp model

ABSTRAK

Rani Suharni. 2017. "Pengembangan Modul Kimia berbasis *Discovery Learning* dengan Pendekatan *Scientific* pada Materi Larutan Elektrolit dan non-Elektrolit Kelas X SMA". Tesis. Program Pascasarjana Universitas Negeri Padang.

Pendekatan scientific merupakan suatu proses pembelajaran yang dirancang agar siswa aktif mengkonstruk konsep, hukum, prinsip melalui tahapan-tahapan metode ilmiah. Penggunaan pendekatan scientific dalam proses pembelajaran dapat dilakukan dengan menggunakan model pembelajaran, salah satunya model discovery learning. Discovery learning merupakan model pembelajaran untuk menemukan sesuatu yang bermakna dalam pembelajaran melalui kegiatan pengamatan, pengalaman, serta penalaran yang menuntut keterlibatan siswa secara aktif dalam penemuan pengetahuan mereka sendiri. Kenyataannya keterlibatan siswa secara langsung dalam penemuan dan pengkonstruksian pengetahuan dalam pembelajaran masih belum maksimal, hal ini dikarenakan bahan ajar yang tersedia belum sesuai dengan pendekatan scientific. Salah satu solusi yang dapat diberikan adalah dengan mengembangkan bahan ajar berupa modul kimia berbasis discovery learning dengan pendekatan scientific pada materi larutan elektrolit dan non-elektrolit. Tujuan dari pengembangan ini adalah untuk menghasilkan modul kimia yang valid, praktis, dan efektif.

Proses pengembangan modul kimia ini menggunakan model Plomp yang terdiri dari 3 tahap yaitu, *preliminary*, *prototyping* dan *assesment*. Subjek penelitian adalah peserta didik kelas X SMAN 2 Padang. Validasi dilakukan oleh pakar pendidikan kimia dan guru kimia. Praktikalitas modul kimia dilihat dari hasil angket praktikalitas terhadap pelaksanaan pembelajaran, angket peserta didik dan guru. Efektivitas dilihat dari hasil belajar siswa setelah menggunakan modul kimia yang dikembangkan.

Hasil analisis data validasi menunjukkan bahwa modul kimia berbasis discovery learning dengan pendekatan scientific sudah valid dari segi isi, konstruk dan penyajiannya. Praktikalitas modul kimia yang dikembangkan berada tingkat yang baik dari segi penggunaan dan kesesuaian dengan waktu yang tersedia. Modul kimia berbasis discovery learning dengan pendekatan scientific telah efektif karena dapat membantu siswa dalam pemahaman materi, yang dibuktikan dengan hasil belajar. Kesimpulannya, modul kimia berbasis discovery learning dengan pendekatan scientific pada materi larutan elektrolit dan non-elektrolit kelas X SMA yang dihasilkan telah valid, praktis, dan efektif.

Kata Kunci: discovery learning, pendekatan scientific, model Plomp, modul kimia

PERSETUJUAN AKHIR TESIS

PERSETU	JUAN AKHIR TE	SIS
	Nama Mahasiswa NIM	: Rani Suharni : 15176005
Nama	Tanda Tangan	Tanggal
Prof. Dr. Hj. Ellizar, M.Pd. Pembimbing 1	Slige	07-07-2017
<u>Dr. Hardeli, M.Si.</u> Pembimbing 2	H(rA)	<u> 24-07 - 201</u> :
Dekan FMIPA Universitas Negeri Padang	Ketua F	Program Studi
)~4,
Prof. Dr. Lufri, M.S.	Budhi Okt	avia, M.Si. Ph.D.

PERSETUJUAN KOMISI UJIAN TESIS

PERSETUJUAN KOMISI UJIAN TESIS MAGISTER PENDIDIKAN No. Nama Tanda Tangan 1. Prof. Dr. Hj. Ellizar, M.Pd. (Ketua) 2. Dr. Hardeli, M.Si. (Sekretaris) 3. Ananda Putra, S.Si., M.Si., Ph.D. (Anggota) 4. Dr. Fajriah Azra, M.Si. (Anggota) 5. Dr. Irwan, M.Si. (Anggota) Mahasiswa: Nama : Rani Suharni NIM : 15176005 Tanggal Ujian : 08 Juni 2017

SURAT PERNYATAAN

Dengan ini Saya menyatakan:

- Karya tulis saya, tesis dengan judul "Pengembangan Modul Kimia Berbasis Discovery Learning dengan Pendekatan Scientific Pada Materi Asam Basa Kelas XI SMA" adalah asli dan belum pernah diajukan untuk mendapatkan gelar akademik, baik di Universitas Negeri Padang maupun di perguruan tinggi lainnya.
- Karya tulis ini murni gagasan, penilaian, dan rumusan saya sendiri tanpa bantuan tidak sah dari pihak lain kecuali arahan dari tim pembimbing.
- 3. Di dalam karya tulis ini tidak terdapat hasil karya orang lain atau pendapat yang telah dipublikasikan orang lain, kecuali dikutip secara tertulis dengan jelas dan dicantumkan sebagai acuan di dalam naskah saya dengan menyebutkan nama pengarangnya serta dicantumkan pada daftar rujukan.
- 4. Pernyataan ini saya buat dengan sesungguhnya dan apabila di kemudian hari terdapat penyimpangan dan ketidakbenaran pernyataan ini saya bersedia menerima sanksi akademik berupa pencabutan gelar yang telah saya peroleh karena karya tulis ini, serta sanksi lainnya yang sesuai dengan norma dan ketentuan hukum yang berlaku.

Padang, Juli 2017

Saya yang Menyatakan

Rani Suharni

NIM 15176005

KATA PENGANTAR

Puji syukur penulis ucapkan kehadirat Allah SWT, karena berkat rahmat dan karunia-Nya penulis dapat menyelesaikan penulisan tesis dengan judul "Pengembangan Modul Kimia berbasis *Discovery Learning* dengan Pendekatan *Scientific* pada Materi Larutan Elektrolit dan Non-Elektrolit Kelas X SMA". Selama penulisan tesis ini, penulis banyak mendapat bimbingan dan bantuan dari berbagai pihak. Oleh karena itu penulis mengucapkan terima kasih kepada yang terhormat:

- 1. Ibu Prof. Dr. Hj. Elizar, M.Pd sebagai dosen pembimbing I.
- 2. Bapak Dr. Hardeli, M.Si sebagai dosen pembimbing II.
- 3. Bapak Budhi Oktavia, M.Si., Ph.D selaku Ketua Program Studi Magister Pendidikan Kimia FMIPA UNP.
- 4. Bapak dan Ibu staf pengajar Program Studi Magister Pendidikan Kimia FMIPA UNP.
- 5. Bapak Drs. Syamsul Bhari, M.Pd.I selaku Kepala SMA Negeri 2 Padang.
- 6. Bapak Bustami, S.Pd selaku validator dan guru pembimbing pada penelitian.
- 7. Bapak dan Ibu Majelis Guru SMA Negeri 2 Padang.
- 8. Siswa-siswi SMA Negeri 2 Padang yang telah mendukung pelaksanaan penelitian.
- Pihak-pihak yang telah membantu penulis dalam menyelesaikan penulisan tesis ini.

Tesis ini ditulis dengan berpedoman kepada Buku Panduan Penulisan Tugas Akhir Universitas Negeri Padang. Namun dengan segala kerendahan hati, penulis mengharapakan kritik dan saran yang membangun dari berbagai pihak.

Padang, April 2017

Penulis

DAFTAR ISI

ABSTRACT	i
ABSTRAK	ii
PERSETUJUAN AKHIR TESIS	iii
PERSETUJUAN KOMISI UJIAN TESIS	iv
SURAT PERNYATAAN	v
KATA PENGANTAR	vi
DAFTAR ISI	viii
DAFTAR TABEL	X
DAFTAR GAMBAR	
DAFTAR LAMPIRAN	
BAB I. PENDAHULUAN	
A. Latar Belakang	
B. Rumusan Masalah	
C. Tujuan Penelitian	
D. Spesifikasi Produk yang Diharapkan	
E. Manfaat Penelitian	8
F. Asumsi dan Batasan Pengembangan	8
G. Defenisi Istilah	9
BAB II. KAJIAN PUSTAKA	11
A. Pembelajaran Kurikulum 2013	11
B. Model Pembelajaran Discovery Learning	16
C. Modul Pembelajaran	22
D. Modul Pembelajaran berbasis <i>Discovery Learning</i> dengan Pendekata Scientific	
E. Karakteristik Materi Larutan Elektrolit dan non-Elektrolit	
F. Model Pengembangan Perangkat Pembelajaran	
G. Kualitas Hasil Pengembangan	

H. Penelitian yang Relevan	37
BAB III. METODE PENELITIAN	40
A. Jenis Penelitian	40
B. Model Pengembangan	40
C. Prosedur Penelitian	40
D. Uji Coba Produk	51
E. Jenis Data	55
F. Instrumen Pengumpulan Data	55
G. Teknik Analisis Butir Soal Tes Hasil Belajar pada Materi Larutan Elektrolit dan non-Elektrolit	58
H. Hasil Analisis Butir Soal Tes Hasil Belajar pada Materi Larutan Eledan non-Elektrolit	
I. Teknik Analisis Data	63
BAB IV. HASIL PENGEMBANGAN DAN PEMBAHASAN	71
A. Hasil Pengembangan	71
B. Revisi Sebelum dan Sesudah Tahap Asessment (Field Test)	116
C. Pembahasan	116
D. Keterbatasan Penelitian	129
BAB V. KESIMPULAN, IMPLIKASI, DAN SARAN	130
A. Kesimpulan	130
B. Implikasi	132
C. Saran	133
DAFTAR RUJUKAN	134
I AMPIRAN	137

DAFTAR TABEL

Tab	pel H	Halaman
1.	Uraian Kegiatan Pembelajaran dengan Pendekatan Scientific	14
2.	Paduan Langkah Pembelajaran Discovery Learning dan Pendekatan Scientific	25
3.	Analisis Konsep Materi Larutan elektrolit dan non-Elektrolit	
4.	Desain Penelitian.	53
5.	Kegiatan Pembelajaran Kelas Eksperimen dan Kelas Kontrol	54
6.	Klasifikasi Tingkat Validitas Item Soal	59
7.	Klasifikasi Indeks Kesukaran Item Soal	60
8.	Klasifikasi Daya Pembeda Item Soal	61
9.	Klasifikasi Tingkat Reliabilitas Tes	62
10.	Kategori keputusan berdasarkan momen kappa (K)	64
11.	Kriteria Aktivitas Siswa	70
12.	Hasil Validasi Modul Kimia	103
13.	Analisis Hasil Evaluasi Kelompok Kecil	107
14.	Hasil Analisis Angket Respon Siswa	110
15.	Distribusi Jawaban Angket respon Guru	111
16.	Analisis Jawaban angket Respon Guru	111
17.	Hasil Belajar Siswa Kelas Sampel	113
18.	Hasil Uji Hipotesis Hasil Belajar Kelas Sampel	114
19.	Hasil Analisis Aktivitas Siswa di Kelas	115
20	Pavisi Produk Satalah Panalitian	114

DAFTAR GAMBAR

Gar	mbar Halaman
1.	Lapisan Tes Formatif Model Pengembangan Ploomp
2.	Rancangan dan prosedur penelitian pengembangan modul kimia berbasis discovery learning dengan pendekatan scientific
3.	Cover Modul Kimia Berbasis Discovesry Learning dengan Pendekatan Scientific
4.	Kata Pengantar Modul Kimia Berbasis <i>Discovery Learning</i> dengan Pendekatan <i>Scientific</i>
5.	Daftar Isi Modul Kimia Berbasis <i>Discovery Learning</i> dengan pendekatan Scientific
6.	KI, KD, Indikator dan Tujuan Pembelajaran pada Modul Kimia berbasis Discovery Learning dengan Pendekatan Scientific
7.	Tampilan Peta Konsep pada Modul Kimia Berbasis <i>Discovery Learning</i> dengan pendekatan <i>Scientific</i>
8.	Petunjuk Penggunaan Modul Kimia Berbasis <i>Discovery Learning</i> dengan pendekatan <i>Scientific</i>
9.	Tampilan Lembar Kegiatan Modul Kimia berbasis <i>Discovery Learning</i> dengan Pendekatan <i>Scientific</i>
10.	Tampilan Lembar Kerja Siswa pada Modul Kimia
11.	Tampilan Daftar Pustaka Modul Kimia berbasis <i>Discovery Learning</i> dengan pendekatan <i>Scientific</i>
12.	Header dan Footer Modul Kimia
13.	Contoh Kegiatan Stimulasi Modul Kimia Berbasis <i>Discovery Learning</i> dengan pendekatan <i>Scientific</i>
14.	Contoh Kegiatan Identifikasi Masalah pada Modul Kimia Berbasis <i>Discovery</i> Learning dengan pendekatan <i>Scientific</i>

15.	Kegiatan Mengumpulkan Data pada Modul Kimia	86
16.	Kegiatan Mengolah Data pada Modul Kimia	87
17.	Kegiatan Memverifikasi Data pada Modul Kimia	87
18.	Kegiatan Menarik Kesimpulan pada Modul Kimia	88
19.	Langkah Stimulasi Sebelum dan Setelah Revisi	90
20.	Pengumpulan Data Kegiatan 1.a Sebelum dan Setelah Revisi	92
21.	Pernyataan Identifikasi Masalah Kegiatan 1.b Sebelum dan Setelah Revisi.	93
23.	Kesalahan yang ditemukan Setelah Self Evaluation	94
24.	Tampilan Langkah Pembelajaran Sebelum dan Setelah Revisi	96
25.	Pernyataan Identifikasi Masalah Kegiatan 1.a Sebelum dan Setelah Revisi .	96
26.	Revisi Kolom Hipotesis menjadi Rumusan Masalah	97
27.	Prototipe 2 Sebelum dan Setelah Revisi berdasarakan Saran Validator	98
28.	Peta Konsep Sebelum dan Setelah Revisi	100
29.	Langkah Stimulasi Kegiatan 3.a Sebelum dan Setelah Revisi	l01
30.	Gambar 4.1 pada Modul Sebelun dan Sesudah Revisi	102
31.	Petunjuk Pengisian Tabel pada Kegiatan 1.b Sebelum dan Setelah <i>One-to-o Evaluation</i>	
32.	Kalimat Petunjuk pada Kegiatan 2 Sebelum dan Setelah <i>One-to-one</i> Evaluation	105
33.	Petunjuk Pengisian Tabel pada Kegiatan 2 Sebelum dan Setelah Evaluasi Kelompok Kecil	108

DAFTAR LAMPIRAN

La	impiran H	Halaman
1.	Pedoman Wawancara Guru terhadap Bahan Ajar yang Digunakan	137
2.	Kisi-Kisi dan Angket Siswa pada Tahap Investigasi Awal	140
3.	Hasil Analisis Kurikulum	143
4.	Kisi-kisi Lembar Evaluasi Sendiri (Self Evaluation) Modul Kimia	145
5.	Lembar Evaluasi Sendiri (Self Evaluation) Modul Kimia	146
6.	Kisi-kisi Instrumen Validasi Modul Kimia	148
7.	Rubrik Lembar Validasi Modul Kimia	149
8.	Lembar Validasi Modul Kimia	154
9.	Lembar Validasi Instrumen Validitas Modul Kimia	157
10.	. Lembar Hasil Validasi Modul Kimia	160
11.	. Distribusi Data dan Analisis Validitas Modul Kimia	167
12.	. Lembar Wawancara Evaluasi Perorangan (One to One Evaluation)	168
13.	. Angket Respon Siswa pada Evaluasi Kelompok Kecil (<i>Small Group Evaluation</i>)	170
14.	. Distribusi dan Analisis Hasil Angket Small Group Evaluation	171
15.	. Kisi-Kisi Angket Praktikalitas Modul Kimia (Angket Respon Siswa).	172
16.	. Angket Respon Siswa	173
17.	. Kisi-Kisi Angket Praktikalitas Modul Kimia (Angket Respon Guru)	175
18.	. Angket Praktikalitas Modul Kimia (Angket Respon Guru)	176
19.	. Lembar Validasi Instrumen Praktikalitas Modul Kimia	178
20.	. Distribusi Hasil Angket Respon Siswa pada Field Test	181
21.	. Analisis Hasil Angket Respon Siswa pada Field Test	182
22.	. Distribusi dan Analisis Hasil Angket Respon Guru pada Field Test	183

23.	Rencana Pelaksanaan Pembelajaran dengan Menggunakan Modul Kimia .	184
24.	Kisi-kisi Lembar Validasi RPP Menggunakan Modul Berbasis <i>Discovery</i>	
	Learning dengan pendekatan Scientific	203
25.	Lembar Validasi RPP Menggunakan Modul Kimia Berbasis Discovery	
	Learning dengan Pendekatan Scientific	204
26.	Lembar Validasi Instrumen Validasi RPP Menggunakan Modul Kimia	
	Berbasis Discovery Learning dengan Pendekatan Scientific	207
27.	Lembar Hasil Validasi RPP	211
28.	Hasil Validasi RPP	216
29.	Lembar Observasi Aktivitas Belajar Siswa (di Kelas)	217
30.	Hasil Analisis Aktivitas Siswa (di Kelas)	218
31.	Kisi-Kisi Soal Uji Coba	219
32.	Soal Uji Coba	221
33.	Distribusi Soal Uji Coba	229
34.	Analisis Validitas Butir Soal Uji Coba	231
35.	Analisis Indeks Kesukaran dan Daya Beda Soal Uji Coba	232
36.	Analisis Reliabilitas Soal Uji Coba	233
37.	Hasil Analisis Soal Uji Coba	234
38.	Kisi-Kisi Soal Tes Akhir	235
39.	Soal Tes Akhir	237
40.	Hasil Tes Akhir Kelas Eksperimen dan Kelas Kontrol	243
41.	Hasil Uji Normalitas Tes Akhir Kelas Eksperimen	244
42.	Hasil Uji Normalitas Tes Akhir Kelas Kontrol	245
43.	Uji Homogenitas Kelas Sampel	246
44.	Uji Hipotesis Penelitian	247
45.	Wilayah Luas di Bawah Kurva Normal	248

46.	Tabel Nilai Kritis L untuk Uji Liliefors	249
47.	Nilai Kritik Sebaran F	250
48.	Tabel Nilai Persentil untuk Distribusi T	252
49.	Surat Keterangan Setelah Penelitian	253
50.	Modul Kimia berbasis Discovery Learning dengan Pendekatan Scientific.	254

BAB I PENDAHULUAN

A. Latar Belakang

Pesatnya perkembangan ilmu pengetahuan dan teknologi serta adanya arus globalisasi mendorong pemerintah untuk berupaya meningkatkan kualitas pendidikan. Salah satu upaya pemerintah untuk meningkatkan kualitas pendidikan di Indonesia adalah penataan ulang dan penyempurnaan kurikulum yang menjadi pedoman pelaksanaan pendidikan. Pada tahun 2013, pemerintah menetapkan dan mengimplementasikan kurikulum baru bagi pendidikan Indonesia, yakni Kurikulum 2013. Kurikulum 2013 disiapkan untuk mencetak generasi yang siap di dalam menghadapi tantangan masa depan. Hal ini sesuai dengan tujuan kurikulum 2013 menurut Permendikbud No. 69 (2013: 4), yakni mempersiapkan manusia Indonesia agar memiliki kemampuan hidup sebagai pribadi dan warga negara yang beriman, produktif, kreatif, inovatif, dan afektif serta mampu berkontribusi pada kehidupan bermasyarakat, berbangsa, bernegara, dan peradaban dunia.

Proses pembelajaran pada kurikulum 2013 lebih menekankan pada keseimbangan antara pengembangan sikap spiritual dan sosial, rasa ingin tahu, kreativitas, kerja sama dengan kemampuan intelektual dan psikomotorik siswa. Kurikulum 2013 bermaksud merubah pola proses pembelajaran yang selama ini cenderung menjadikan siswa sebagai objek belajar, yang berdampak menyulitkan siswa memahami materi pembelajaran. Kurikulum 2013 lebih mengutamakan proses dimana siswa sebagai subjek belajar,

artinya siswa haruslah terlibat secara penuh dan aktif dalam proses penemuan dan pengkonstruksian pengetahuan atau materi pembelajaran yang ditetapkan. Hal ini dapat dilihat dari pendekatan yang dikembangkan dalam proses pembelajaran dengan kurikulum 2013, yakni pendekatan *scientific*.

Pendekatan *scientific* merupakan pendekatan yang berdasarkan pada pendekatan ilmiah (proses keilmuan). Hosnan (2014: 34) mengemukakan bahwa pendekatan *scientific* merupakan suatu proses pembelajaran yang dirancang sedemikian rupa agar siswa aktif mengkonstruk (membangun) konsep, hukum, prinsip melalui tahapan-tahapan metode ilmiah. Pendekatan *scientific* dimaksudkan untuk memberi pemahaman siswa dalam mengenal dan memahami materi menggunakan pendekatan ilmiah (Majid. 2014: 95). Berdasarkan hal tersebut, dapat dikatakan bahwa kurikulum 2013 diimpilikasikan dengan baik jika guru dapat menerapkan pendekatan *scientific* dalam mengajarkan konsep-konsep, dan prinsip-prinsip pada materi yang akan dipelajari, khususnya pada mata pelajaran kimia.

Kimia merupakan ilmu yang mempelajari tentang struktur materi, dan perubahan-perubahan yang dialami oleh materi (Keenan. 1986: 2). Kimia berkaitan erat dengan pendekatan *scientific*, karena ilmu kimia tidak terlepas dari proses ilmiah yang mendasari munculnya pendekatan *scientific*. Hal ini sesuai dengan pendapat The College Board (2012: 14), yang menyatakan bahwa pendeketan *scientific* akan mendukung keterlibatan langsung siswa dengan fenomena kimia, artinya dalam mempelajari kimia sangat diperlukan adanya pendekatan *scientific* yang meliputi proses pemecahan masalah dan

berpikir kritis sehingga siswa benar-benar memahami fenomena kimia yang diamatinya.

Proses penerapan pendekatan *scientific* sebagai implementasi kurikulum 2013 dalam pembelajaran kimia dapat diwujudkan dengan menggunakan model pembelajaran yang menekankan pada proses ilmiah. Salah satu model pembelajaran yang sesuai dengan karakteristik kurikulum 2013 adalah model pembelajaran discovery learning (model pembelajaran penemuan). Model ini menekankan pentingnya pemahaman struktur atau ideide penting terhadap suatu disiplin ilmu, melalui keterlibatan siswa secara aktif dalam pembelajaran. Hal ini sesuai dengan pendapat Mulyasa (2014: 144) yang mengemukakan bahwa discovery learning merupakan model pembelajaran untuk menemukan sesuatu yang bermakna dalam pembelajaran melalui kegiatan pengamatan, pengalaman, serta penalaran. Kegiatankegiatan tersebut menuntut keterlibatan siswa secara aktif dalam penemuan pengetahuan mereka sendiri.

Proses pembelajaran dengan *discovery learning* terdiri dari enam langkah, yaitu (1) stimulasi untuk merangsang siswa mengeksplorasi bahan yang relevan, (2) identifikasi masalah untuk menemukan permasalahan apa saja yang dihadapi melalui kegiatan mengamati, menanya, dan lain-lain, (3) pengumpulan data untuk mendapatkan informasi yang relevan dengan masalah yang didapatkan, (4) pengolahan data untuk menafsirkan data yang telah didapatkan, (5) memverifikasi data untuk membuktikan kebenaran hipotesis, dan (6) menyimpulkan konsep, dan prinsip pada materi yang

dipelajari. Langkah-langkah pembelajaran dengan model *discovery learning* ini menuntut siswa untuk terlibat secara aktif dalam penemuan konsepkonsep materi yang dipelajari. Hal ini diharapkan dapat membantu siswa untuk meningkatkan kemampuannya dalam memahami materi pembelajaran (Mulyasa. 2014: 144).

Penggunaan pendekatan scientific dengan suatu model pembelajaran merupakan keadaan ideal yang dituntut oleh kurikulum 2013. Pada kenyataannya, proses pembelajaran yang berlangsung di sekolah belum memaksimalkan penggunaan pendekatan scientific, khususnya pembelajaran kimia. Hasil angket yang diberikan kepada beberapa orang siswa SMA, menunjukkan informasi bahwa pembelajaran di sekolah sudah mulai baik. Siswa belajar dengan menggunakan buku paket dan LKS yang berisi materi pembelajaran yang bersifat verbal, sehingga dalam proses pembelajaran siswa cenderung menghafal. Selain itu, bahan ajar yang digunakan di sekolah memaparkan materi pembelajaran secara penuh, dan penyampaian materi dalam buku paket sulit dipahami sehingga mengakibatkan kurangnya keterlibatan siswa secara langsung dalam penemuan konsep. Hal ini tentu sedikit bertentangan dengan tuntutan pembelajaran 2013, yang pada hakikatnya, menuntut siswa untuk dapat menemukan sendiri konsep-konsep tersebut melalui arahan dan bimbingan dari guru, serta dukungan bahan ajar yang sesuai dan dapat dipahami siswa dengan mudah.

Uraian diatas menunjukkan bahwa dalam proses pembelajaran dibutuhkan suatu bahan ajar yang bukan hanya menyajikan materi

pembelajaran secara penuh, melainkan bahan ajar yang menuntun siswa secara aktif menemukan sendiri konsep-konsep yang harus dipelajarinya dengan bahasa yang mudah dimengerti. Penemuan konsep tersebut dapat dilakukan melalui proses mengamati, menanya, mengeksperimen, mengasosiasi serta mengkomunikasi. Salah satu konsep yang harus dipahami oleh siswa SMA adalah konsep larutan elektrolit dan non-elektrolit.

Larutan elektrolit dan non-elektrolit merupakan salah satu materi pembelajaran kimia yang dipelajari di kelas X semester II. Materi pembelajaran ini berupa fakta-fakta, konsep-konsep dan prinsip-prinsip yang mengharuskan siswa untuk melihat atau mengamati sendiri fakta-fakta dan menemukan konsep serta prinsip yang terdapat dalam materi ini. Berdasarkan wawancara dengan siswa, proses pembelajaran sudah berlangsung baik, yakni sudah terlaksananya kegiatan praktikum yang memfasilitasi siswa untuk menemukan fakta yang dapat diamati dengan mata, namun proses yang terjadi secara mikroskopis belum terlihat dalam proses praktikum. Hal ini tentu berdampak terhadap pemahaman siswa pada materi tersebut.

Uraian tersebut menunjukkan bahwa diperlukan adanya bahan ajar atau sumber belajar yang memungkinkan siswa untuk belajar sesuai dengan proses pembelajaran kurikulum 2013, yakni bahan ajar yang menuntun keterlibatan siswa secara langsung dalam penemuan konsep materi yang dipelajari. Bahan ajar tersebut dapat berupa modul pembelajaran yang disesuaikan dengan tuntutan kurikulum itu sendiri. Menurut Nasution (2010: 205) modul adalah suatu unit yang lengkap yang berdiri sendiri dan terdiri atas suatu rangkaian

kegiatan belajar yang disusun untuk membantu siswa mencapai sejumlah tujuan yang dirumuskan secara khusus dan jelas.

Uraian di atas menjadi dasar bagi penulis untuk menyusun sebuah modul pembelajaran yang sesuai dengan tuntutan kurikulum 2013, yakni modul kimia berbasis discovery learning dengan pendekatan scientific. Modul ini dikemas dengan langkah-langkah discovery learning dan disesuaikan dengan pendekatan scientific. Penggunaan modul ini diharapkan dapat membantu siswa dalam proses pembelajaran dan membuat siswa terlibat langsung dalam proses penemuan serta pengkonstruksian pengetahuan didapatkannya, sehingga mampu meningkatkan yang pemahamannya terhadap materi. Selain itu, modul ini juga diharapkan dapat membantu guru dalam pelaksanaan kurikulum 2013 dan penerapan suatu model pembelajaran dalam kegiatan pembelajaran.

Penyusunan modul ini dilakukan melalui sebuah penelitian pengembangan, yang merupakan penelitian untuk mengembangkan suatu produk baru atau menyempurnakan produk yang sudah ada serta menguji kualitas produk tersebut. Kualitas produk tersebut dapat ditentukan dari kevalidan, kepraktisan, dan keefektifan produk itu sendiri (Sugiyono, 2006: 407). Berdasarkan hal ini penulis melakukan penelitian dengan judul "Pengembangan Modul Kimia berbasis *Discovery Learning* dengan Pendekatan *Scientific* pada Materi Larutan Elektrolit dan non-Elektrolit Kelas X SMA".

B. Rumusan Masalah

Rumusan masalah dalam penelitian ini adalah "bagaimanakah tingkat validitas, praktikalitas, dan efektivitas modul kimia berbasis *Discovery Learning* dengan pendekatan saintifitik pada materi larutan elektrolit dan non-elektrolit yang dikembangkan?"

C. Tujuan Penelitian

Tujuan penelitian ini adalah sebagai berikut:

- Menghasilkan modul kimia berbasis Discovery Learning dengan pendekatan scientific pada materi larutan elektrolit dan non-elektrolit untuk kelas X SMA.
- 2. Menentukan tingkat validitas, praktikalitas, dan efektifitas modul kimia berbasis *Discovery Learning* dengan pendekatan *scientific* pada materi larutan elektrolit dan non-elektrolit untuk kelas X SMA.

D. Spesifikasi Produk yang Diharapkan

Produk yang dihasilkan dalam penelitian ini adalah bahan ajar berupa modul kimia berbasis *Discovery Learning* dengan pendekatan *scientific*. Modul yang dihasilkan memiliki langkah-langkah model pembelajaran *discovery learning* yang disesuaikan dengan pendekatan *scientific*. Langkah-langkah pembelajaran dengan model *discovery learning* akan membimbing siswa dalam menemukan konsep materi yang dipelajari. Penggunaan modul kimia ini diharapkan dapat meningkatkan pemahaman siswa pada materi yang dipelajari.

E. Manfaat Penelitian

Modul kimia yang dihasilkan dari penelitian ini dapat dimanfaatkan seperti berikut:

- Sebagai salah satu bahan ajar yang dapat digunakan dalam pembelajaran kimia, khususnya materi larutan eleltrolit dan non-elektrolit.
- Sebagai salah satu bahan ajar yang dapat membantu siswa untuk mengembangkan kemampuan berfikir dan pemahaman mereka terhadap materi larutan elektrolit dan non-elektrolit.

F. Asumsi dan Batasan Pengembangan

1. Asumsi

Penggunaan modul kimia berbasis *discovery learning* dengan pendekatan *scientific* dalam proses pembelajaran diasumsikan dapat meningkatkan pemahaman siswa pada materi laruutan elektrolit dan non-elektrolit, dan juga membantu guru dalam pelaksanaan kurikulum 2013, karena modul kimia yang dikembangkan menggunakan model pembelajaran *discovery learning* yang dipadukan dengan langkah pendekatan *scientific*. Hal ini sesuai dengan proses pembelajaran yang diharapkan dalam kurikulum 2013.

2. Batasan Pengembangan

Penelitian ini dibatasi pada pengembangan modul kimia untuk materi larutan elektrolit dan non-elektrolit, serta hanya diujicobakan pada satu sekolah.

G. Defenisi Istilah

1. Discovery Learning

Discovery learning adalah suatu model pembelajaran untuk mengembangkan cara belajar siswa aktif melalui kegiatan menemukan sendiri, serta menyelidiki sendiri. Pembelajaran dengan model discovery learning, siswa bisa belajar berfikir analisis dan mencoba memecahkan sendiri masalah yang dihadapi.

2. Pendekatan Scientific

Pendekatan *scientific* merupakan suatu proses pembelajaran yang dirancang sedemikian rupa agar peserta didik aktif mengkonstruk (membangun) konsep, hukum, dan prinsip melalui tahapan-tahapan merumuskan masalah, merumuskan hipotesis, mengumpulkan data dengan menggunakan berbagai teknik, meganalisis data, menarik kesimpulan dan mengkomunikasikan konsep, hukum atau prinsip yang ditemukan.

3. Modul Pembelajaran

Modul adalah suatu unit yang lengkap yang berdiri sendiri dan terdiri atas suatu rangkaian kegiatan belajar yang disusun untuk membantu siswa mencapai sejumlah tujuan yang dirumuskan secara khusus dan jelas.

4. Modul berbasis *Discovery Learning*

Modul pembelajaran berbasis *discovery learning* adalah modul yang disusun sesuai dengan langkah-langkah (sintak) model pembelajaran *discovery learning*.

5. Validitas

Validitas adalah suatu ukuran menunjukkan tingkat kesahihan isi suatu produk yang dihasilkan.

6. Praktikalitas

Praktikalitas media pembelajaran berkaitan dengan kemudahan guru dan siswa dalam menggunakan media tersebut.

7. Efektivitas

Efektifitas adalah pengukuran media pembelajaran yang berkaitan dengan hasil belajar yang diperoleh peserta didik, apakah telah tercapainya hasil yang diharapkan atau belum. Efektifitas media pembelajaran.

BAB V KESIMPULAN, IMPLIKASI, DAN SARAN

A. Kesimpulan

Penelitian ini merupakan penelitian pengembangan yang bertujuan menghasilkan produk serta mengujin keefektifan produk tersebut. menghasilkan produk berupa Modul Kimia berbasis *Discovery Learning* dengan Pendekatan *Scientific*. Berdasarkan hasil penelitian maka diperoleh kesimpulan sebagai berikut.

- Produk yang dihasilkan dari penelitian ini berupa Modul Kimia berbasis
 Discovery Learning dengan Pendekatan *Scientific* pada Materi Larutan
 Elektrolit dan non-Elektrolit. Modul ini berisi kegiatan pembelajaran
 yang disajikan dengan model *discovery learning* dan disesuaikan dengan
 pendekatan *scientific*.
- Berdasarkan data hasil validasi dan uji coba, maka dapat disimpulkan bahwa:
 - scientific yang dikembangkan memiliki validitas yang sangat tinggi, baik dari komponen isi, komponen konstruk (penyajian), komponen kebahasaan, dan komponen kegrafisan kegrafisan. Tingkat validitas modul ini ditentukan oleh nilai yang diberikan oleh pakar (ahli) pada proses validasi. Sebelum proses validasi, modul yang dikembangkan telah melalui tahap evaluasi sendiri (self evaluation), dan revisi berdasarkan saran pakar (ahli) selama proses validasi.

- b. Modul kimia berbasis *discovery learning* dengan pendekatan *scientific* yang dikembangkan memiliki praktikalitas yang sangat tinggi dari aspek daya tarik, proses penggunaan, dan evaluasi. Hal ini menunjukkan bahwa modul yang dikembangkan dapat dengan mudah digunakan dalam proses pembelajaran dan dapat membantu siswa untk belajar secara mandiri, menemukan konsep materi pembelajaran secara mandiri. Tingkat praktikalitas ditentukan dengan angket respon siswa dan angket respon guru, dan sebelumnya modul yang dikembangkan telah mengalami tahap evaluasi satu-satu (*one-to-one evaluation*), evaluasi kelompok kecil (*small group evaluation*), dan ujicoba kelompok besar (*field test*).
- c. Modul kimia berbasis discovery learning dengan pendekatan scientific yang dikembangkan memiliki efektivitas yang tinggi. Efektivitas modul ditentukan dengan prinsip metoda eksperimen, dengan dua kelas sampel (kelas eksperimen dan kelas kontrol). Efektivitas modul dilihat dari hasil belajar dan aktivitas belajar. Efektivitas berdasarkan hasil belajar dilihat dari pengujian hipotesis, menunjukkan bahwa hasil belajar siswa yang belajar dengan menggunakan modul kimia berbasis discovery learning dengan pendekatan scientific lebih tinggi secara signifikan dari hasil belajar siswa yang belajar tanpa menggunakan modul. Selain itu, berdasarkan aktivitas siswa modul yang dikembangkan sudah sangat efektif.

B. Implikasi

Penelitian pengembangan yang peneliti lakukan menghasilkan produk berupa Modul kimia berbasis *discovery learning* dengan pendekatan *scientific*. Modul ini disusun berdasarkan langkah-langkah pembelajaran *discovery learning* yang disesuaikan dengan pendekatan *scientific*. Pengembangan ini dimaksudkan untuk memperkaya sumber belajar siswa yang sesuai dengan tuntutan kurikulum yang ditetapkan yakni kurikulum 2013.

Modul kimia kimia yang dikembangkan telah melewati tahap evaluasi dan uji coba sehingga dihasilkan modul kimia yang valid dan praktis, sehingga modul kimia yang dikembangkan dapat dijadikan salah satu bahan ajar dalam proses pembelajaran kimia, khususnya materi larutan elektrolit dan non-elektrolit.

Penggunaan modul kimia yang dikembangkan dalam proses pembelajaran dapat membantu siswa dalam menemukan konsep materi pembelajaran yang dipelajari secara mandiri. Selain itu, bagi guru dengan menggunakan modul kimia yang dikembangkan berarti guru telah menerapkan suatu model pembelajaran, yakni model *discovery learning*. Selain itu, penggunaan modul kimia yang dikembangkan juga dapat meningkatkan pemahaman siswa dalam proses pembelajaran. H al ini dikarenakan modul yang dikembangkan dapat menuntun siswa menemukan sendiri konsep materi yang dipelajari, dan memuat latihan soal sebagai pemantapan kosep teresebut.

C. Saran

Berdasarkan kesimpulan dan keterbatasan penelitian, penulis menyarankan:

- 1. Bagi guru maupun peneliti lainnya disarankan untuk dapat mengembangkan modul pembelajaran lain yang *berbasis discovery* learning pada berbagai materi, serta hendaknya dapat melakukan uji coba dan penyebaran pada skala yang lebih luas.
- 2. Bagi peneliti lainnya disarankan untuk memperbanyak observer dalam pembelajaran, untuk membantu mengontrol proses pembelajaran dengan menggunakan modul kimia berbasis *discovery learning* dengan pendekatan *scientific*.
- 3. Pada guru maupun peneliti lain untuk dapat membuat lembar pengisian modul, agar modul yang diberikan kepada masing-masing siswa bukan hanya untuk sekali pakai, tapi dapat digunakan lagi untuk siswa yang lainnya. Hal ini untuk meminimalkan biaya pencetakan modul karena modul yang diberikan berupa modul berwarna.
- 4. Bagi peneliti lainnya, penentuan efektivitas modul sebaiknya bukan hanya berasal dari nilai tes akhir siswa saja, melainkan ditambahkan dengan nilai pengisian lembar kegiatan pada modul.

DAFTAR RUJUKAN

- Arikunto, Suharsimi. 2008. *Dasar-dasar Evaluasi Pendidikan (Edisi Revisi)*. Jakarta: Bumi Aksara.
- Arsyad, Azhar. 2007. Media Pengajaran. Jakarta: Raja Grafindo Persada.
- Balim, A., G. (2009). The Effects of Discovery Learning on Students' Success and Inquiry Learning Skills. Egitim Arastirmalari-Eurasian Journal of Educational Research, 35: 1-20.
- Boslaugh, Sarahand Paul A. W. 2008. *Statistic in a Nutshell, a desktop quick reference*. Beijing, Cambridge, Famham, Köln, Sebastopol, Taipei, Tokyo: O'reilly.
- Dahar, Ratna Wilis. 2011. *Teori-Teori Belajar dan Pembelajaran*. Jakarta: Erlangga.
- Daryanto dan Aris Dwicahyono. 2014. *Pengembangan Perangkat Pembelajaran*. Yogyakarta: Penerbit Gava Media.
- Depdiknas. 2008. Panduan Pengembangan Bahan Ajar. Jakarta: Depdiknas.
- Dimiyati, Mujiono.1999. Belajar dan Pembelajaran. Jakarta: Rineka Cipta.
- Dj., Latisma. 2011. Evaluasi Pendidikan. Padang: UNP Press.
- Haryono. 2013. *Pembelajaran IPA yang Menarik dan Mengasyikkan*. Yogyakarta: Kepel Press.
- Hastuti, Endang Tri., Widha Sunarno., Sukarmin. 2014. *Pengembangan Modul IPA Terpadu berbasis Penemuan dengan Tema Spaghetti*. Prosiding Seminar Nasional Fisika (SNFPF) ke-5 ISSN: 2302-7827, 5(1): 173-185.
- Hosnan, M. 2014. Pendekatan Saintifik dan Kontekstual dalam Pembelajaran Abad 21. Bogor: Ghalia Indonesia.
- Keenan, Charles W., Donald C. Kleinferter, dan Jesse H. Wood. 1993. *Ilmu Kimia untuk Universitas Edisi Keenam*. Jakarta: Erlangga.
- Kunandar. 2014. *Penilaian Autentik Edisi Revisi*. Jakarta: PT. Raja Grafindo Persada.
- Lufri. 2005. Metodologi Penelitian. Padang: FMIPAUNP.

- Mahmoud, Abdelrahman Kamel Abdelrahman. 2014. The Effect of Using Discovery Learning Strategy in Teaching Grammatical Rules to first year General Secondary Student on Developing Their Achievement and Metacognitive Skills. International Journal of Innovation and Scientific Research. ISSN 2351-8014. 5(2): 146-153.
- Majid, Abdul. 2014. Implementasi Kurikulum 2013. Bandung: Interes Media.
- Mulyasa, E. 2014. *Guru dalam Implementasi Kurikulum 2013*. Bandung: Remaja Rosda Karya.
- Nasution, M. A. 2010. Berbagai Pendekatan dalam Proses Belajar Mengajar. Jakarta: Bumi Aksara.
- Nieveen, Nienke. 1999. *Design Approaches and Tools in Education and Training*. Netherlands: Kluwer Academic Publishers.
- Oloyede, Olufunmilayo I., (2010) Comparative Effect of the Guided Discovery and Concept Mapping Teaching Startegies on Sss Student's Chemistry Achievement. Humanity & Social Science Journal, ISSN 1818-4960, 5(1): 01-06.
- Peraturan Menteri Pendidikan Nasional Republik Indonesia Nomor 41 Tahun 2007 tentang Standar Proses untuk Satuan Pendidikan Dasar dan Menengah. 2007. Jakarta: BSNP.
- Peraturan Menteri Pendidikan dan Kebudayaan Republik Indonesia Nomor 59 Tahun 2014 tentang Kurikulum 2013 Sekolah Menengah Atas (SMA)/Madrasah Aliyah. 2014. Jakarta: Kemendikbud.
- Peraturan Menteri Pendidikan dan Kebudayaan Republik Indonesia Nomor 65 Tahun 2013 tentang Standar Proses Pendidikan Dasar dan Menengah. 2013. Jakarta: Kemendikbud.
- Peraturan Menteri Pendidikan dan kebudayaan Republik Indonesia Nomor 69 Tahun 2013 tentang Kerangka Dasar dan Struktur Kurikulum Sekolah Menengah Atas/Madrasah Aliyah. 2013. Jakarta: Kemendikbud.
- Peraturan Menteri Pendidikan dan Kebudayaan Republik Indonesia Nomor 103 Tahun 2014 tentang Pembelajaran pada Pendidikan Dasar dan Pendidikan Menengah. 2014. Jakarta: Kemendikbud.
- Plomp, Tjeerd dan Nienke Nieveen. 2007. An Introduction to Educational Desaign Research. Netherlands: SLO.
- Riduwan. 2009. Belajar Mudah Penelitian Untuk Guru Karyawan dan Peneliti Pemula. Bandung: Alfabeta.

- Rochmad. 2012. "Desain Model Pengembangan Perangkat Pembelajaran Matematika". *Jurnal Kreano ISSN: 2086-2334 Jurusan Matematika FMIPA UNNES*, 3(1): 59-72.
- Sardiman. 2001. *Interaksi dan Motivasi Belajar Mengajar*. Jakarta: PT RajaGrafindo Persada.
- Sugiyono. 2006. Metoda Penelitian Pendidikan. Bandung: Alfabeta
- Sugiyono. 2012. Metoda Penelitian Administrasi. Bandung: Alfabeta.
- Sudjana. 2005. Metoda Statistika. Bandung: Tarsito Bandung.
- Sudjana, Nana. 2011. *Penilaian Hasil Proses Belajar Mengajar*. Bandung : PT Remaja Rosdakarya.
- Sudjana, Nana dan Ahmad Rivai. 1997. Media Pembelajaran (Penggunaan dan Pembuatannya). Bandung: Sinar Baru.
- Sukardi. 2008. Evaluasi Pendidikan, Prinsip, dan Operasionalnya. Yogyakarta: Bumi Aksara.
- The Colege Board. 2012. AP Chemistry Guided-Inquiry Experiments: Applying the Science Practice (Teacher Manual). New York: The College Board.
- Veniegas, Ophelia P, n.d. Ensuring the Effectiveness and Quality of Learning Materials: How to Use and Evaluate Literacy/CE Material. Philipines: Traing ang Research Southeast Asian Minister of Education Organisation (SEAMEO) Regional Center for Educational Innovative and Technology (INNOTECH).
- Widodo, Lusi Widayanti. 2013. Peningkatan Aktivitas Belajar dan Hasil Belajar Siswa dengan Metode Problem Based Learning pada Siswa Kelas VIIa MTS Negeri Donomulyo Kulon Progo Tahun Pelajaran 2012/2013. Jurnal Fisika Indonesia. 49 (XVII): 32-35.
- Yang, Euphony F. Y. 2010. The Effectiveness of Inductive Discovery Learning in 1: 1 Mathematics Classroom. Proceedings of the 18th International Conference on Computers in Education. Putrajaya, Malaysia: Asia-Pacific Society for Computers in Education: 743-747.
- Yuliani, Kiki. 2015. The Development of Learning Devices Based Guided Discovery Model to Improve Understanding Concept and Critical Thinking Mathematically Ability of Students at Islamic Junior High School of Medan. Journal of Education and Practice ISSN 2222-1735. 6(24): 116-128.

LAMPIRAN

Lampiran	1.	Pedoman	Wawancara	Guru	terhadap	Bahan	Ajar	yang
		Digunakar	1					

	Nama Guru Tempat	: :
1.	Kurikulum apa yang diterapkan	di sekolah ibuk?
2.	Metode pembelajaran apa pembelajaran kimia di sekolah ?	
3.	Apakah dalam proses pembelaj menanya, mengeksperimenka mengkomunikasikan (menyamp	
4.	Bahan ajar apa yang digunakan	dalam proses pemelajaran di sekolah ibuk?
5.	Apakah bahan ajar yang telah c tuntutan kurikulum 2013?	ligunakan selama ini sudah sesuai dengan
6.	Apakah bahan ajar yang telah d	ligunakan dapat membimbing siswa untuk an masalah pada materi pelajaran yang ada

Hasil Wawancara Guru terhadap Bahan Ajar yang Digunakan

Nama Guru : R S

Tempat : MAN Sumpur

Hasil wawancara:

Peneliti : Kurikulum apa yang diterapkan di sekolah Bapak/Ibu?

Guru : Di Sekolah ini sudah menggunakan kurikulum 2013

Peneliti : Metode pembelajaran apa yang Bapak/Ibu gunakan dalam proses

pembelajaran kimia di sekolah?

Guru : Biasanya metode yang digunakan adalah metode ceramah dan

diskusi atau tanya jawab.

Peneliti :Apakah dalam proses pembelajaran siswa sudah melakukan

mengamati, menanya, mengeksperimenkan, mengasosiasikan

(menalar), dan mengkomunikasikan (menyampaikan)?

Guru : Sudah ada, tapi belum dapat dimaksimalkan.

Peneliti : Bahan ajar apa saja yang digunakan dalam proses pembelajaran di

sekolah?

Guru : Buku cetak dan LKS dari penerbit.

Peneliti : Apakah bahan ajar yang digunakan sudah sesuai dengan tuntutan

kurikulum 2013?

Guru : Kalau untuk segi materi, bahan ajar yang digunakan sudah cukup

baik, namun kekekurangannya bahan ajar tersebut masih berupa jabaran materi, dan langkah proses *scientific*nya kurang jelas

terlihat.

Peneliti : Apakah bahan ajar yang digunakan dapat membimbing siswa

untuk berfikir kreatif dalam memecahkan masalah pada materi

pelajaran yang ada didalam bahan ajar?

Guru : Ya, sedikit, namun belum maksimal.

•

Nama Guru : D

Tempat : SMA 2 Padang

Hasil wawancara:

Peneliti : Kurikulum apa yang diterapkan di sekolah Bapak/Ibu?

Guru : Kurikulum yang digunakan di sekolah ini adalah kurikulum 2013.

Peneliti : Metode pembelajaran apa yang Bapak/Ibu gunakan dalam proses

pembelajaran kimia di sekolah?

Guru : Biasanya metode yang digunakan adalah metode ceramah, diskusi

atau tanya jawab.

Peneliti :Apakah dalam proses pembelajaran siswa sudah melakukan

mengamati, menanya, mengeksperimenkan, mengasosiasikan

(menalar), dan mengkomunikasikan (menyampaikan)?

Guru : Sudah ada, tapi belum dapat dimaksimalkan.

Peneliti : Bahan ajar apa saja yang digunakan dalam proses pembelajaran di

sekolah?

Guru : Buku cetak dan LKS dari penerbit Intan Pariwara.

Peneliti : Apakah bahan ajar yang digunakan sudah sesuai dengan tuntutan

kurikulum 2013?

Guru : Materi yang disajikan dalam buku cetak dan LKS sudah memadai

untuk pembelajaran, tapi terdapat beberapa kekurangan misalnya belum jelas dimana langkah proses *scientific* yang harus dilakukan, sehingga penerapan pendekatan *scientific* dalam

pembelajaran belum maksimal.

Peneliti : Apakah bahan ajar yang digunakan dapat membimbing siswa

untuk berfikir kreatif dalam memecahkan masalah pada materi

pelajaran yang ada didalam bahan ajar?

Guru : Ya, sedikit, namun belum maksimal.

Lampiran 2. Kisi-Kisi dan Angket Siswa pada Tahap Investigasi Awal

No	Indikator	Nomor
		Pertanyaan
1	Suasana pembelajaran di kelas	1
2	Bahan ajar yang telah digunakan dalam proses	2
	pembelajaran	
3	Proses penggunaan bahan ajar yang telah digunakan	3,4,5
	dalam proses pembelajaran	
4	Kesulitan yang dihadapi siswa dalam penggunaan bahan	Pendapat nomor
	ajar yang telah digunakan dalam proses pembelajaran	1, 2
5	Pengaruh penggunaan bahan ajar yang telah digunakan	Pendapat nomor
	terhadap motivasi siswa	3
6	Kebutuhan siswa terhadap jenis bahan ajar	Pendapat nomor
		4, 5

Angket Siswa pada Tahap Investigasi Awal

Nama Siswa:

Berilah tanda (✓) pada salah satu kolom "Ya" atau "Tidak" sesuai dengan pendapatmu!

No	Pernyataan	Ya	Tidak
1.	Pembelajaran kimia di kelas sudah menyenangkan		
2.	Pembelajaran kimia menggunakan bahan ajar (buku		
	paket, modul, atau LKS)		
3.	Bahan ajar yang digunakan sudah dapat membantumu		
	dalam memecahkan masalah pada materi pelajaran		
4.	Bahan ajar yang digunakan mampu menunjang dalam		
	melakukan kegiatan praktikum secara mandiri dan		
	berkelompok		
5.	Bahan ajar yang digunakan selama ini apakah sudah		
	dapat membimbingmu untuk melakukan tahap		
	pembelajaran mengamati, menanya, mengumpulkan		
	informasi, mengasosiasi, dan mengkomunikasikan pada		
	suatu materi kimia?		

Tulislah pendapatmu terhadap proses pembelajaran kimia berdasarkan pertanyaan berikut!

1.	Apa kesulitan yang ditemukan selama proses pembelajaran dengan bahan ajar
	yang digunakan selama ini?

2. Apakah kelemahan yang ditemukan pada bahan ajar yang dipakai selama ini?

3.	Menurut pendapat kamu, apakah bahan ajar yang telah digunakan selar
	mampu meningkatkan motivasimu dalam pelajaran kimia? Berikan ala
4.	Menurut pendapat kamu, bahan ajar seperti apa yang kamu harapkan p
	pembelajaran kimia?
5.	Warna apa saja yang kamu sukai?

Lampiran 3. Hasil Analisis Kurikulum

HASIL ANALISIS KURIKULUM

Mata Pelajaran : Kimia

Kelas : X

Tahun Pelajaran : 2016/2017

Semester : 2

Kompetensi Dasar	Indikator	Tujuan Pembelajaran	Kegiatan
3.8 Menganalisis sifat larutan	3.8.1 Membedakan larutan	1. Siswa mampu mendefenisikan	Mengamati dan
elektrolit dan larutan	elektrolit dan non elektrolit.	larutan melalui data yang	mengerjakan
nonelektrolit berdasarkan daya	4.8.1 Merancang, melakukan	disajikan pada modul.	modul sesuai
hantar listriknya.	eksperimen, menyimpulkan		petunjuk.
4.8 Merancang, melakukan, dan	dan menyajikan hasil	2. Siswa mampu membedakan	Mengamati dan
menyimpulkan serta	percobaan untuk	larutan elektrolit dan non-	mengerjakan
menyajikan hasil percobaan	pengelompokan larutan ke	elektrolit melalui data percobaan	modul sesuai
untuk mengetahui sifat larutan	dalam larutan elektrolit kuat,	yang disajikan pada modul.	petunjuk.
elektrolit dan larutan non-	elektrolit lemah, dan non-		
elektrolit.	elektrolit.	3. Siswa mampu melakukan	Praktikum
	3.8.2 Mengidentifikasi penyebab	eksperimen, menganalisis data,	
	kemampuan larutan elektrolit	menyimpulkan dan melaporkan	
	menghantarkan arus listrik.	hasil eksperiment mengenai	
	3.8.3 Mendeskripsikan bahwa	identifikasi karakteristik larutan	

larutan elektrolit	dapat		elektrolit kuat, elektrolit lemah,	
berupa senyawa ior	n dan		dan non-elektrolit.	
senyawa kovalen polar		4.	Siswa mampu mengelompokkan	Mengamati dan
			larutan kedalam larutan elektrolit	mengerjakan
			kuat, elektrolit lemah, dan non-	modul sesuai
			elektrolit berdasarkan	petunjuk.
			karakteristik larutan tersebut	
			melalui percobaan.	
		5.	Siswa mampu membedakan	Mengamati dan
			larutan elektrolit kuat, elektrolit	mengerjakan
			lemah, dan non-elektrolit	modul sesuai
			berdasarkan deraja ionisasinya	petunjuk.
			berdasarkan data yang disajikan di	
			dalam modul.	
		6.	Siswa mampu mengidentifikasi	_
			penyebab kemampuan larutan	mengerjakan
			elektrolit dalam menghantarkan	modul sesuai
			listrik berdasarkan data yang	petunjuk.
			disajikan di dalam modul.	
		7.	1 1	Mengamati dan
			bahwa larutan elektrolit dapat	mengerjakan
			berupa senyawa ion dan senyawa	modul sesuai
			kovalen polar.	petunjuk.

Lampiran 4. Kisi-kisi Lembar Evaluasi Sendiri (Self Evaluation) Modul Kimia

Kisi-kisi Lembar Evaluasi Sendiri (Self Evaluation) untuk Modul Kimia Berbasis Discovery Learning dengan Pendekatan Scientific pada Materi Larutan Elektrolit dan non-Elektrolit

No	Aspek	Indikator	Jumlah Soal	Nomor pernyataan
1	Didaktik	a. Modul mendukung konsep siswab. Modul disesuaikan dengan	9	1a, 1b, 1c, 1d, 1e, 1f, 1g, 1h, 1i
		Pendekatan <i>Scientific</i> dengan model pembelajaran <i>Discovery Learning</i>		
2	Konstruksi	 a. Kelengkapan identitas modul b. Kejelasan tujuan dari modul berbasis <i>Discovery Learning</i> dengan pendekatan <i>scientific</i> c. Ketetapan pokok-pokok rincian materi dengan isi modul 	4	2a, 2b, 2c, 2d
3	Teknis	a. Kejelasan tulisan, jenis dan ukuran <i>font</i> yang digunakanb. Kejelasan model pembelajaran pada modulc. Kemenarikan penampilan modul	11	3a1, 3a2, 3a3, 3a4, 3b1, 3b2, 3b, 3c1, 3c2, 3c3, 3c4
4	Bahasa	a. Tata bahasa	7	4a, 4b, 4c, 4d, 4e, 4f, 4g

Lampiran 5. Lembar Evaluasi Sendiri (Self Evaluation) Modul Kimia

Lembar Evaluasi Sendiri (Self Evaluation) untuk Modul Kimia Berbasis Discovery Learning dengan Pendekatan Scientific pada Materi Larutan Elektrolit dan non-Elektrolit

Petunjuk Berilah tanda checklist $(\sqrt{})$ bila Modul sudah sesuai dengan pernyataan

No	Kriteria LKS	Ada	Belum
1	Didaktik		
	 a. Modul sesuai dengan indikator yang ingin di capai b. Tujuan sesuai dengan materi modul c. Modul berbasis discovery learning dengan pendekatan scientific d. Model pembelajaran Discovery Learning memudahkan penemuan konsep e. Masalah yang disajikan dapat mendukung siswa untuk merumuskan hipotesis f. Rumusan masalah yang disajikan dapat mendukung siswa untuk menemukan konsep dari model/gambar dan kegiatan pratikum g. Informasi materi yang disajikan dapat dipahami siswa dengan baik h. Gambar yang disajikan di dalam modul mendukung siswa untuk memahami modul i. Modul diurutkan sesuai sintak-sintak Discovery Learning 	 ✓ ✓ ✓ ✓ ✓ ✓ 	
2	Syarat konstruksi		
	 a. Modul yang dikembangkan sudah berbasis <i>Discovery Learning</i> dengan pendekatan <i>scientific</i> b. Tujuan dan pertanyaan pada modul mendukung konsep dengan benar c. Materi modul yang sudah sistematis d. Masalah yang disajikan sesuai dengan modul berbasis <i>Discovery Learning</i> dengan pendekatan <i>scientific</i> 	✓ ✓ ✓	

3	Teknis		
	 a. Tulisan 1. Menggunakan jenis tulisan yang jelas di baca 2. Menggunakan ukuran tulisan yang jelas di baca 3. Kesesuaian penggunaan tanda baca 4. Kaidah yang digunakan sesuai dengan kaidah bahasa Indonesia yang baik dan benar b. Gambar 1. Gambar pada cover yang digunakan dapat menyampaikan pesan yang di maksud 2. Gambar, kolom jawaban, dan sebagainya disajikan dengan jelas, dan menarik. 3. Judul dan keterangan disesuaikan dengan permasalahan yang disajikan dalam modul c. Kegrafikan 1. Warna pada cover modul dapat membuat pembaca tertarik untuk mengetahui isi dari modul 2. Desain tampilan modul menarik 3. Kesesuaian penggunaan komposisi warna pada modul 4. Warna yang digunakan pada setiap komponen dalam 		
4	modul bervariasi dan menarik Syarat Bahasa		
	 a. Bahasa yang digunakan sudah komunikatif b. Bahasa yang digunakan merupakan bahasa yang baik dan benar menurut kaidah bahasa indonesia (EYD) c. Bahasa yang digunakan tidak bermakna ganda d. Bahasa yang digunakan singkat, padat dan jelas e. Bahasa yang digunakan dapat mengembangkan kemampuan banyak siswa f. Menggunakan peristilahan yang sesuai dengan konsep yang menjadi pokok bahasan g. Informasi yang terdapat dalam modul mudah dipahami 	✓✓✓✓	

Lampiran 6. Kisi-kisi Instrumen Validasi Modul Kimia

KISI-KISI INSTRUMEN VALIDASI MODUL KIMIA BERBASIS *DISCOVERY LEARNING* DENGAN PENDEKATAN *SCIENTIFIC* PADA MATERI LARUTAN ELEKTROLIT DAN NON-ELEKTROLIT

No	Aspek yang	Indikator	Nomor
NO	Dinilai	ilidikatoi	Pernyataan
1	Komponen Isi	Kesesuaian dengan Kompetensi Dasar (KD)	1
		Kesesuaian masalah yang disajikan dengan materi yang diajarkan	2
		Kesesuaian pertanyaan untuk menemukan konsep	3
		Kesesuaian pertanyaan / pernyataan dengan model pembelajaran	4
		 Discovery Kesesuaian aktivitas eksperimen/percobaan untuk menemukan konsep 	5
2	Komponen	Sistematika modul	5
	konstruk	Keterkaitan antar konsep dengan masalah yang diberikan didalam modul	6
3	Komponen kebahasaan	Kesesuaian dengan kaidah Bahasa Indonesia	7
	Redailasaan	Ketepatan untuk mengembangkan kemampuan berpikir siswa.	8
4	Komponen	Kejelasan gambar dan masalah yang	9
	kegrafisan	diberikan	10
		• Penggunaan <i>font</i> (jenis dan ukuran)	11
		 Lay out (tata letak) Desain warna pada modul	12

Lampiran 7. Rubrik Lembar Validasi Modul Kimia

RUBRIK LEMBAR VALIDASI KOMPONEN ISI MODUL KIMIA BERBASIS DISCOVERY LEARNING DENGAN PENDEKATAN SCIENTIFIC PADA MATERI LARUTAN ELEKTROLIT DAN NON-ELEKTROLIT

Indikator	Penilaian	Kriteria Skor Penilaian
1. Kesesuaian materi yang disajikan dalam modul dengan tuntutan	4	Sesuai dengan KD, indikator dan tujuan pembelajaran yang ingin dicapai
Kompetensi Dasar (KD), indikator, dan tujuan pembelajaran	3	Sesuai dengan KD, indikator tetapi tidak sesuai dengan tujuan pembelajaran yang ingin dicapai
yang ingin dicapai	2	Sesuai dengan KD, tetapi tidak sesuai dengan indikator dan tujuan pembelajaran yang ingin dicapai
	1	Tidak sesuai dengan KD, indikator dan tujuan pembelajaran yang ingin dicapai
2. Kesesuaian masalah yang disajikan dengan materi yang diajarkan	4	Permasalahan yang diberikan keseluruhannya sudah sesuai dengan materi yang diajarkan
	3	Permasalahan yang diberikan sebagian besar sudah sesuai dengan materi yang diajarkan
	2	Permasalahan yang diberikan sebagian kecil sudah sesuai dengan materi yang diajarkan
	1	Permasalahan yang diberikan tidak sesuai dengan materi yang diajarkan
3. Kesesuaian pertanyaan untuk menemukan konsep	4	Pertanyaan yang dibuat keseluruhannya dapat mengarahkan siswa untuk menemukan konsep.
	3	Pertanyaan yang dibuat sebagian besar dapat mengarahkan siswa untuk menemukan konsep.
	2	Pertanyaan yang dibuat sebagian kecil dapat mengarahkan siswa untuk menemukan konsep.

	1	Pertanyaan yang dibuat tidak dapat
		mengarahkan siswa untuk
		menemukan konsep.
4. Kesesuaian aktivitas	4	Aktivitas eksperimen / percobaan
eksperimen /		membuat siswa mampu dalam
percobaan untuk		menemukan konsep dan
menemukan konsep		membimbing siswa untuk berfikir
		kreatif dalam memecahkan masalah
		pada materi pelajaran yang ada di
		dalam modul
	3	Aktivitas eksperimen / percobaan
		sebagian besar membuat siswa
		mampu dalam menemukan konsep
		dan membimbing siswa untuk
		berfikir kreatif dalam memecahkan
		masalah pada materi pelajaran yang
		ada di dalam modul
	2	Aktivitas eksperimen / percobaan
		sebagian kecil membuat siswa
		mampu dalam menemukan konsep
		dan membimbing siswa untuk
		berfikir kreatif dalam memecahkan
		masalah pada materi pelajaran yang
		ada di dalam modul
	1	eksperimen / percobaan tidak bisa
		membuat siswa mampu dalam
		menemukan konsep dan
		membimbing siswa untuk berfikir
		kreatif dalam memecahkan masalah
		pada materi pelajaran yang ada di
		dalam modul

RUBRIK LEMBAR VALIDASI KOMPONEN KONSTRUK MODUL KIMIA BERBASIS *DISCOVERY LEARNING* DENGAN PENDEKATAN *SCIENTIFIC* PADA MATERI LARUTAN ELEKTROLIT DAN NON-ELEKTROLIT

Indikator	Penilaian	Kriteria Skor Penilaian						
1. Sistematika	4	Secara keseluruhan modul yang						
penyusunan modul		disusun sudah sistematis						
mulai judul,	3	Sebagian besar modul yang disusun						
kompetensi inti,		sudah sistematis						
kompetensi dasar,	2	Modul disusun kurang sistematis						
indikator yang hendak	1	Modul disusun tidak sistematis						
dicapai, gambar, dan								
latihan								
2. Keterkaitan antar	4	Konsep-konsep yang disajikan						
konsep dengan		dalam modul secara keseluruhannya						
masalah yang		memiliki keterkaitan satu sama lain						
diberikan di dalam	3	Konsep-konsep yang disajikan						
modul		dalam modul sebagian besar						
		memiliki keterkaitan satu sama lain						
	2	Konsep-konsep yang disajikan						
		dalam modul sebagian kecil						
		memiliki keterkaitan satu sama lain						
	1	Konsep-konsep yang disajikan						
		dalam modul tidak memiliki						
		keterkaitan satu sama lain						

RUBRIK LEMBAR VALIDASI KOMPONEN KEBAHASAAN MODUL KIMIA BERBASIS *DISCOVERY LEARNING* DENGAN PENDEKATAN SCIENTIFIC PADA MATERI LARUTAN ELEKTROLIT DAN NON-ELEKTROLIT

Indikator Kriteria Skor Penilaian Penilaian 1. Kesesuaian aturan 4 penulisan Tata secara keseluruhannya sesuai penulisan dengan sudah kaidah tata bahasa dengan kaidah tata bahasa Indonesia yang benar Indonesia yang benar Tata penulisan sebagian besar 3 (misalnya pada sudah sesuai dengan kaidah tata ketepatan bahasa Indonesia yang benar penggunaan ejaan, 2 Tata penulisan sebagian kecil tanda baca, istilah, sudah sesuai dengan kaidah tata dan struktur kalimat) bahasa Indonesia yang benar Tata 1 penulisan tidak dengan kaidah tata bahasa Indonesia yang benar 4 Bahasa yang digunakan secara Bahasa yang digunakan dapat mengembangkan keseluruhannya sesuai dengan kemampuan berpikir tingkat intelektual siswa sehingga siswa. mengembangkan kemampuan berpikir siswa 3 Bahasa yang digunakan sebagian besar sesuai dengan tingkat intelektual siswa sehingga dapat kemampuan mengembangkan berpikir siswa 2 Bahasa yang digunakan sebagian kecil sesuai dengan tingkat intelektual siswa sehingga dapat mengembangkan kemampuan berpikir siswa Bahasa yang digunakan tidak 1 sesuai dengan tingkat intelektual siswa sehingga dapat mengembangkan kemampuan berpikir siswa

RUBRIK LEMBAR VALIDASI KOMPONEN KEGRAFISAN MODUL KIMIA BERBASIS *DISCOVERY LEARNING* DENGAN PENDEKATAN *SCIENTIFIC* PADA MATERI LARUTAN ELEKTROLIT DAN NON-ELEKTROLIT

Indikator	Penilaian	Kriteria Skor Penilaian
1. Gambar pada model	4	Gambar pada model secara
dapat diamati dengan		keseluruhan dapat diamati dengan
jelas.		jelas
	3	Gambar pada model sebagian
		besar dapat diamati dengan jelas
	2	Gambar pada model sebagian kecil dapat diamati dengan jelas
	1	Gambar pada model tidak dapat diamati dengan jelas
2. Penggunaan jenis dan	4	Ukuran dan jenis huruf yang
ukuran huruf		digunakan secara keseluruhannya
		dapat dibaca
	3	Ukuran dan jenis huruf yang
		digunakan sebagian besar dapat
		dibaca
	2	Ukuran dan jenis huruf yang
		digunakan sebagian kecil dapat dibaca
	1	Ukuran dan jenis huruf yang
		digunakan tidak dapat dibaca
3. Tata letak (lay out)	4	Tata letak (lay out) sangat teratur
Modul	3	Tata letak (lay out) teratur
	2	Tata letak (lay out) kurang teratur
	1	Tata letak (lay out) tidak teratur
4. Warna yang digunakan	4	Warna yang digunakan secara
pada Modul		keseluruhannya sangat menarik
	3	Warna yang digunakan menarik
	2	Warna yang digunakan kurang
		menarik
	1	Warna yang digunakan tidak
		menarik

Lampiran 8. Lembar Validasi Modul Kimia

LEMBAR VALIDASI MODUL KIMIA BERBASIS DISCOVERY LEARNING DENGAN PENDEKATAN SCIENTIFIC PADA LARUTAN ELEKTROLIT DAN NON-ELEKTROLIT

Lembar validasi ini dimaksudkan untuk mengumpulkan informasi tentang isi, penyajian, dan bahasa yang digunakan pada Modul Kimia Berbasis *Discovery Learning* dengan Pendekatan *Scientific* pada Materi Larutan Elektrolit dan non-Elektrolit, yakni pada kompetensi dasar 3.8 (menganalisis sifat larutan elektrolit dan larutan nonelektrolit berdasarkan daya hantar listriknya) dan 4.8 (merancang, melakukan, dan menyimpulkan serta menyajikan hasil percobaan untuk mengetahui sifat larutan elektrolit dan larutan non- elektrolit) di kelas X SMA.

PETUNJUK PENGISIAN

- Melalui lembar penilaian ini Bapak/Ibu diminta pendapatnya tentang isi dari Modul Berbasis *Discovery Learning* dengan Pendekatan *Scientific* yang dikembangkan.
- Pendapat yang Bapak/Ibu berikan pada setiap butir pernyataan yang terdapat dalam lembar penilaian ini akan digunakan sebagai masukan untuk menyempurnakan Modul Berbasis Discovery Learning dengan Pendekatan Scientific.
- 3. Mohon berikan pendapat Bapak/Ibu dengan memberikan tanda (√), pada salah satu kolom angka 1, 2, 3 atau 4. Angka 1 sampai dengan 4 pada skala jawaban mempunyai kriteria skor penilaian yang dapat dilihat pada rubrik lembar validasi.
- 4. Identitas Bapak/Ibu mohon diisi dengan lengkap.

IDENTITAS

Nama Validator	:
Jurusan/Spesialisasi	•

No	ACDEZ VANC DINH AT		SK	OR		Vatarangan
	ASPEK YANG DINILAI	1	2	3	4	Keterangan
A.	 Komponen Isi: Kesesuaian materi yang disajikan dalam modul dengan tuntutan Kompetensi Inti (KI), Kompetensi Dasar (KD), indikator, dan tujuan pembelajaran yang ingin dicapai. Kesesuaian masalah yang sajikan dengan materi yang diajarkan. Kesesuaian pertanyaan untuk menemukan konsep. Kesesuaian pertanyaan / pernyataan dengan model pembelajaran Discovery Learning. Kesesuaian aktivitas eksperimen / percobaan yang ada didalam modul dengan kemampuan siswa dalam menemukan konsep. 					
В.	 Komponen Konstruk (Penyajian) Sistematika penyusunan modul. Keterkaitan antar konsep dengan masalah yang diberikan dalam modul. 					
C.	Komponen Kebahasaan:					
	 Kesesuaian aturan penulisan dengan kaidah tata Bahasa Indonesia yang benar. Bahasa yang digunakan dapat mengembangkan kemampuan berpikir siswa. 					
D.	Komponen Kegrafisan:					
	 Kejelasan gambar dan masalah yang diberikan. Penggunaan huruf dan ukuran huruf yang digunakan bervariasi. Tata letak (lay out) teratur. Warna-warna yang digunakan pada modul menarik. 					

SARA	N:			
KEPU	TUSAN:			
Petunju	ık:			
	nn Bapak/Ib ki arti sebag		nda (√) pad	la kolom A, B atau C. huruf A, B dan
pa		arutan Elek	trolit dan n	Learning dengan Pendekatan Scientif on-Elekktrolit yang dibuat sangat bagu
pa		arutan Elek	trolit dan n	Learning dengan Pendekatan Scientif on-Elekktrolit yang dibuat cukup bagu iikan.
pa		Larutan Elek	ktrolit dan 1	Learning dengan Pendekatan Scientif non-Elekktrolit yang dibuat tidak bagu
	A	В	С	
				Padang,2016
				Validator
				()

Lampiran 9. Lembar Validasi Instrumen Validitas Modul Kimia

LEMBAR VALIDASI INSTRUMEN VALIDITAS MODUL KIMIA BERBASIS DISCOVERY LEARNING DENGAN PENDEKATAN SCIENTIFIC

A. Pengantar

Angket ini disampaikan kepada Bapak/Ibu sebagai pakar/ ahli. Pemberian instrumen Modul Berbasis *Discovery Learning* dengan Pendekatan *Scientific* ini dimaksudkan untuk mendapatkan masukan tentang kelayakan instrumen yang akan digunakan untuk pengumpulan data tesis peneliti di Program Pascasarjana Pendidikan Kimia Universitas Negeri Padang yang berjudul "Pengembangan Modul Modul Kimia Berbasis *Discovery Learning* dengan Pendekatan *Scientific* pada Materi Larutan Elektrolit dan non-Elekktrolit". Peneliti sangat mengharapkan bantuan Bapak/Ibu berupa pendapat atau masukan dalam bentuk pengisian angket sesuai dengan keadaan sebenarnya, atas bantuan dan kerja sama Bapak/Ibu peneliti ucapkan terima kasih.

B. Petunjuk Pengisian

1. Pilihlah alternatif jawaban yang paling sesuai dengan pendapat Bapak/Ibu pada angket yang terlampir dengan cara memberi tanda cek ($\sqrt{}$) pada kolom yang tersedia. Alternatif jawaban yang tersedia adalah:

1) 4 = Sangat Setuju

3) 2 = Tidak Setuju

3 = Setuju

4) 1 = Sangat Tidak Setuju

2. Jika Bapak/Ibu merasa perlu memberikan catatan khusus demi perbaikan instrumen Modul Berbasis *Discovery Learning* dengan Pendekatan *Scientific* yang dibuat, mohon ditulis langsung pada saran.

VALIDASI INSTRUMEN VALIDITAS MODUL KIMIA BERBASIS DISCOVERY LEARNING DENGAN PENDEKATAN SAINTIFIK

IDENTITAS

Nama Validator

Jurusan/Spesialisasi

Trof Dr. Ellisar, M. 8.1. Illendidikan | Kimia.

No	Kriteria Instrumen LKS	Penilaian						
		4	3	2	1			
1	Keterkaitan indikator (kisi-kisi lembar validasi) dengan butir pernyataan pada lembar validasi	1						
2	Pernyataan yang digunakan mencakup aspek yang mengandung validitas modul	V						
3	Bahasa yang digunakan merupakan bahasa baik dan benar menurut kaidah tata bahasa Indonesia yang benar		V					

Kesimpulan Bapak/Ibu secara umum mengenai Instrumen Modul Berbasis Discovery Learning dengan Pendekatan Saintifik ini memenuhi kategori.

- (A) Dapat digunakan tanpa revisi
- (B) Dapat digunakan dengan revisi sedikit
- (C) Dapat digunakan dengan revisi sedang
- (D) Dapat digunakan dengan revisi banyak
- (E) Tidak dapat digunakan

VALIDASI INSTRUMEN VALIDITAS MODUL KIMIA BERBASIS DISCOVERY LEARNING DENGAN PENDEKATAN SAINTIFIK

IDENTITAS

Nama Validator : Dr. Hardeli . M. Si

Jurusan/Spesialisasi : Kimia

No	The state of the s		Penil	nian	
		4	3	2	1
1	Keterkaitan indikator (kisi-kisi lembar validasi) dengan butir pernyataan pada lembar validasi		V		
2	Pernyataan yang digunakan mencakup aspek yang mengandung validitas modul		V		
3	Bahasa yang digunakan merupakan bahasa baik dan benar menurut kaidah tata bahasa Indonesia yang benar	/			

Kesimpulan Bapak/Ibu secara umum mengenai Instrumen Modul Berbasis Discovery Learning dengan Pendekatan Saintifik ini memenuhi kategori.

(A)Dapat digunakan tanpa revisi

- (B) Dapat digunakan dengan revisi sedikit
- (C) Dapat digunakan dengan revisi sedang
- (D) Dapat digunakan dengan revisi banyak
- (E) Tidak dapat digunakan

(______

Lampiran 10. Lembar Hasil Validasi Modul Kimia

LEMBAR VALIDASI MODUL KIMIA BERBASIS DISCOVERY LEARNING DENGAN PENDEKATAN SCIENTIFIC PADA LARUTAN ELEKTROLIT DAN NON-ELEKTROLIT

Lembar validasi ini dimaksudkan untuk mengumpulkan informasi tentang isi, penyajian, dan bahasa yang digunakan pada Modul Kimia Berbasis *Discovery Learning* dengan Pendekatan *Scientific* pada Materi Larutan Elektrolit dan non-Elektrolit, yakni pada kompetensi dasar 3.8 (menganalisis sifat larutan elektrolit dan larutan nonelektrolit berdasarkan daya hantar listriknya) dan 4.8 (merancang, melakukan, dan menyimpulkan serta menyajikan hasil percobaan untuk mengetahui sifat larutan elektrolit dan larutan non- elektrolit) di kelas X SMA.

PETUNJUK PENGISIAN

- Melalui lembar penilaian ini Bapak/Ibu diminta pendapatnya tentang isi dari Modul Berbasis *Discovery Learning* dengan Pendekatan *Scientific* yang dikembangkan.
- 2. Pendapat yang Bapak/Ibu berikan pada setiap butir pernyataan yang terdapat dalam lembar penilaian ini akan digunakan sebagai masukan untuk menyempurnakan Modul Berbasis *Discovery Learning* dengan Pendekatan *Scientific*.
- 3. Mohon berikan pendapat Bapak/Ibu dengan memberikan tanda (√), pada salah satu kolom angka 1, 2, 3 atau 4. Angka 1 sampai dengan 4 pada skala jawaban mempunyai kriteria skor penilaian yang dapat dilihat pada rubrik lembar validasi.
- 4. Identitas Bapak/Ibu mohon diisi dengan lengkap.

IDENTITAS

Nama Validator Prof. Dr. Ellizar M. Pd.
Jurusan/Spesialisasi J. Lendidikan / Kimia.

No	ASPEK YANG DINILAI		SK	OR	T	Vatarana
Α.		1	2	3	4	Keterangan
	1. Kesesuaian materi yang disajikan dalam modul dengan tuntutan Kompetensi Inti (KI), Kompetensi Dasar (KD), indikator, dan tujuan pembelajaran yang ingin dicapai. 2. Kesesuaian masalah yang sajikan dengan materi yang diajarkan. 3. Kesesuaian pertanyaan untuk menemukan konsep. 4. Kesesuaian pertanyaan / pernyataan dengan model pembelajaran Discovery Learning. 5. Kesesuaian aktivitas eksperimen / percobaan yang ada didalam modul dengan kemampuan siswa dalam			√	VVVV	
	menemukan konsep.					
В.	Komponen Konstruk (Penyajian) Sistematika penyusunan modul. Keterkaitan antar konsep dengan masalah yang diberikan dalam modul.			V	V	
C.	Komponen Kebahasaan: 1. Kesesuaian aturan penulisan dengan kaidah tata Bahasa Indonesia yang benar. 2. Bahasa yang digunakan dapat mengembangkan kemampuan berpikir siswa.			V		
	 Komponen Kegrafisan: Kejelasan gambar dan masalah yang diberikan. Penggunaan huruf dan ukuran huruf yang digunakan bervariasi. Tata letak (lay out) teratur. Warna-warna yang digunakan pada modul menarik. 				VVVV	

SAI	RAN:			
	eberata i r	forma	n'y oil	verilian for modul agar
				7.5

*****	***************************************			
KE	PUTUSAN:			
Petu	mjuk:			
Sila	hkan Bapak/Ib niliki arti seba	u berikan ta gai berikut:	nda (√) pad	a kolom A, B atau C. huruf A, B dan C
A:		n Elektrolit		rning dengan Pendekatan Saintifik pada ekktrolit yang dibuat sangat bagus dan
B:		arutan Elek	trolit dan n	Learning dengan Pendekatan Saintifik on-Elekktrolit yang dibuat cukup bagus ikan.
C:		Larutan Elek	ctrolit dan 1	Learning dengan Pendekatan Saintifik non-Elekktrolit yang dibuat tidak bagus
	A	В	С	
	/			
				Padang,2016
				Validator
				(100
				XVVIII
				Prof Ant Hisar 411
				Prof for Ellisan 4.1
				1 4

	ASPEK YANG DINILAI	1				
			2	3	4	Keterangan
3	Komponen Isi: Kesesuaian materi yang disajikan dalam modul dengan tuntutan Kompetensi Inti (KI), Kompetensi Dasar (KD), indikator, dan tujuan pembelajaran yang ingin dicapai. Kesesuaian masalah yang sajikan dengan materi yang diajarkan. Kesesuaian pertanyaan untuk menemukan konsep. Kesesuaian pertanyaan / pernyataan dengan model pembelajaran Discovery Learning. Kesesuaian aktivitas eksperimen / percobaan yang ada didalam modul dengan kemampuan siswa dalam menemukan konsep.			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	~ ~	
1.	Komponen Konstruk (Penyajian) Sistematika penyusunan modul. Keterkaitan antar konsep dengan masalah yang diberikan dalam modul.			/	1	
	Komponen Kebahasaan: Kesesuaian aturan penulisan dengan kaidah tata Bahasa Indonesia yang benar.				V	
2.	 Bahasa yang digunakan dapat mengembangkan kemampuan berpikir siswa. 				1	

SARAN:	
KEPUTUSAN:	
Petunjuk:	
Silahkan Bapak/Ibu berikan tanda (√) pada memiliki arti sebagai berikut:	a kolom A, B atau C. huruf A, B dan C
A: Modul Kimia Berbasis Discovery Lean Materi Larutan Elektrolit dan non-Ele tidak perlu diperbaiki.	rning dengan Pendekatan Saintifik pada ekktrolit yang dibuat sangat bagus dan
B: Modul Kimia Berbasis Discovery I pada Materi Larutan Elektrolit dan no tetapi perlu dilakukan beberapa perba	on-Elekktrolit yang dibuat cukup bagus
C: Modul Kimia Berbasis <i>Discovery I</i> pada Materi Larutan Elektrolit dan n dan harus dirombak ulang.	Learning dengan Pendekatan Saintifik non-Elekktrolit yang dibuat tidak bagus
A B C	
	Padang,2016
	Validator (

Lampiran 11. Distribusi Data dan Analisis Validitas Modul Kimia

Distribusi Data Validasi Modul Kimia

		Aspek yang Dinilai														
No	Validator	Komponen Isi			1	_		Komponen Kebahasaan			ponen afisan		Jumlah Nilai	Nilai Max		
		1	2	3	4	5	1	2	1	2	1	2	3	4		
1	Prof. Dr. Ellizar, M.Pd	4	4	4	3	4	4	3	3	3	4	4	4	4	48	52
2	Dr. Hardeli, M.Si	3	4	4	3	3	4	3	4	4	4	4	4	4	48	52
3	Bustami, S.Pd	4	4	4	3	3	4	4	3	3	4	3	3	3	45	52
Juml	Jumlah		12	12	9	10	12	10	10	10	12	11	11	11		
Jumlah Tiap Aspek				54			2	2	20	0		4	.5			
Juml	ah Max Tiap Aspek			60			2	4	24	4		4	-8			

Analisis Validitas Modul Kimia

No	Validator	Nilai	P	Pe	P-Pe	1-Pe	K	Tingkat Validitas
1	Prof. Dr. Ellizar, M.Pd	48	0,92	0,08	0,85	0,92	0,92	Sangat Tinggi
2	Dr. Hardeli, M.Si	48	0,92	0,08	0,85	0,92	0,92	Sangat Tinggi
3	Bustami, S.Pd	45	0,87	0,13	0,73	0,87	0,84	Sangat Tinggi
Vali	ditas Total						0,89	Sangat Tinggi

Analisis Validitas Masing-masing Komponen Modul Kimia

No	Aspek yg Dinilai	Nilai	P	Pe	P-Pe	1-Pe	K	Tingkat Validitas
1	Komponen Isi	54	0,90	0,10	0,80	0,90	0,89	Sangat Tinggi
2	Komponen Konstruk	22	0,92	0,08	0,83	0,92	0,91	Sangat Tinggi
3	Komponen Kebahasaan	20	0,83	0,17	0,67	0,83	0,80	Tinggi
4	Komponen Kegrafisan	45	0,94	0,06	0,88	0,94	0,93	Sangat Tinggi

Lampiran 12. Lembar Wawancara Evaluasi Perorangan (One to One Evaluation)

Lembar Wawancara Evaluasi Perorangan (One to One Evaluation)

an	na :
ela	as :
	Bagaimana pendapat kamu tentang tampilan cover pada modul kimia berbasis discovery learning dengan pendekatan scientific?
	Apakah petunjuk penggunaan modul untuk siswa mudah dipahami?
	Apakah gambar, tulisan dan warna pada tampilan cover modul membuat kamu tertarik untuk membacanya?
	Bagaimana pendapat kamu tentang penyajian materi pada modul?
	Apakah penyajian materi pada modul menggunakan bahasa yang mudah dipahami?

•	pakah paham	_	ah-langl	cah p	oembela	ijaran	yang	terdapat	pada	modul	muda

Lampiran 13. Angket Respon Siswa pada Evaluasi Kelompok Kecil (Small Group Evaluation)

Angket Respon Siswa pada Evaluasi Kelompok Kecil (Small Group Evaluation)

Nama :

Kelas :

Petunjuk

Berilah tanda (\checkmark) untuk setiap pernyataan pada kolom yang sesuai dengan kategori berikut

SS = Sangat Setuju

S = Setuju

TS = Tidak Setuju

STS = Sangat Tidak Setuju

No.	Aspek yang dinilai pada Modul	S	kala	Penila	aian
		SS	S	TS	STS
1	Dengan menggunakan modul memudahkan saya memahami konsep larutan elektrolit dan non- elektrolit				
2	Dengan menggunakan modul, memudahkan saya memahami keterkaiatan antar konsep pada materi larutan elektrolit dan non-elektrolit				
3	Langkah pembelajaran yang disediakan dapat menuntun saya dalam menemukan konsep pembelajaran				
4	Pertanyaan-pertanyaan dalam modul dapat menuntun saya dalam menemukan konsep pembelajaran				
5	Latihan yang disediakan dapat memantapkan saya dalam memahami konsep				
6	Penggunaan modul larutan elektrolit dan non- elektrolit dapat meningkatkan aktivitas saya dalam pembelajaran				
7	Gambar yangdisajikan menggunakan warna yang menarik				
8	Ukuran gambar dan warna pada gambar sudah memiliki perbedaan yang jelas dengan gambar lainnya.				

Lampiran 14. Distribusi dan Analisis Hasil Angket Small Group Evaluation

Distribusi Hasil Angket Small Group Evaluation

Siswa			Aspe	ek yang	g Dinil	ai			Jumlah	Nilai
Siswa	1	2	3	4	5	6	7	8	Nilai	Max
1	3	3	3	4	4	3	4	4	28	32
2	3	3	3	4	3	3	4	4	27	32
3	4	4	4	4	4	4	4	4	32	32
4	3	3	3	4	3	4	3	3	26	32
5	4	4	4	4	4	3	3	4	30	32
6	3	4	4	4	4	3	4	4	30	32

Analisis Hasil Small Group Evaluation

Siswa	Nilai	Nilai Max	P	Pe	P-Pe	1-Pe	K	Tingkat Praktikalitas
1	28	32	0,88	0,13	0,75	0,88	0,86	Sangat Tinggi
2	27	32	0,84	0,16	0,69	0,84	0,81	Sangat Tinggi
3	32	32	1,00	0,00	1,00	1,00	1,00	Sangat Tinggi
4	26	32	0,81	0,19	0,63	0,81	0,77	Tinggi
5	30	32	0,94	0,06	0,88	0,94	0,93	Sangat Tinggi
6	30	32	0,94	0,06	0,88	0,94	0,93	Sangat Tinggi
	Pra	aktikalit	as Kes	eluruh	an		0,88	Sangat Tinggi

Lampiran 15. Kisi-Kisi Angket Praktikalitas Modul Kimia (Angket Respon Siswa)

Kisi-Kisi Angket Praktikalitas Modul Kimia Berbasis *Discovery Learning* dengan Pendekatan *Scientific* (Angket Respon Siswa)

No	Aspek	Indikator	Nomor
			Pernyataan
1	Daya Tarik	a. Penggunaan memiliki penampilan yang menarikb. Petunjuk penggunaan modul dapat dipahami dengan jelas	1-5
2	Proses Penggunaan	 a. Penggunaan modul yang dikembangkan dapat melibatkan partisipasi aktivitas belajar siswa b. Pertanyaan-pertanyaan dalam modul dapat membantu siswa dalam memecahkan masalah pada materi pelajaran yang ada di dalam modul c. Langkah-langkah pembelajaran mampu menunjang siswa dalam melakukan kegiatan praktikum secara mandiri dan berkelompok 	6-10
3	Evaluasi	a. Latihan pada modul membantu siswa dalam memahami konsep	11-14

Lampiran 16. Angket Respon Siswa

Angket Kepraktisan Modul Kimia Berbasis *Discovery Learning* dengan Pendekatan *Scientific* pada materi Larutan Elektrolit dan non-Elektrolit (Angket Respon Siswa)

Siswa-siswi yang Ibuk sayangi, jawablah pertanyaan dibawah ini sesuai dengan hati nuranimu. Jawaban yang kamu berikan tidak akan mempengaruhi nilaimu dan dijamin kerahasiaannya. Jawaban yang kamu berikan harus sesuai dengan tanggapanmu terhadap pelaksanaan pembelajaran dengan menggunakan modul kimia berbasis *discovery learning* dengan pendekatan *scientific*.

PETUNJUK PENGGUNAAN

- 1. Bacalah tiap-tiap pernyataan dengan baik
- Berilah tanda (✓) untuk setiap pernyataan pada kolom yang sesuai dengan kategori berikut

SS = Sangat Setuju

S = Setuju

TS = Tidak Setuju

STS = Sangat Tidak Setuju

No.	Pertanyaan	Skala Penilaian			aian
		SS	S	TS	STS
1	Tampilan modul menarik untuk dipelajari				
2	Komposisi warna pada modul menarik dan sudah bervariasi				
3	Huruf dan tulisan pada modul sudah jelas				
4	Petunjuk penggunaan modul sudah jelas				
5	Petunjuk penggunaan modul mudah dipahami dengan baik				
6	Penggunaan modul larutan elektrolit dan non- elektrolit dapat meningkatkan aktivitas saya dalam				

	pembelajaran			
7	Ilustrasi atau gambar penyajian masalah pada			
	modul mudah dipahami dan membantu			
	memperjelas uraian masalah			
8	Langkah-langkah pembelajaran yang terdapat			
	dalam modul sudah sistematis, dan mennuntun saya			
	untuk memahami materi pembelajaran			
9	Modul yang digunakan mampu menunjang dalam			
	melakukan kegiatan praktikum secara mandiri dan			
	berkelompok			
10	Uraian atau penjelasan dalam modul mudah			
	dipahami			
11	Pertanyaan di dalam modul sesuai dengan tujuan			
	pembelajaran dan dapat mengembangkan			
	pengetahuan			
12	Penggunaan modul yang dikembangkan sesuai			
	dengan waktu yang tersedia			
13	Latihan pada modul membantu siswa dalam			
	memahami konsep			
14	Apakah kamu mearasa mudah untuk menjawab			
	butir soal atau tes ulangan harian?			
		I	i	1

Siswa

(Nama:	.)
(1 (411144)	•,

Lampiran 17. Kisi-Kisi Angket Praktikalitas Modul Kimia (Angket Respon Guru)

Kisi-Kisi Angket Praktikalitas Modul Kimia Berbasis *Discovery Learning* dengan Pendekatan *Scientific* (Angket Respon Guru)

No	Indikator	Nomor
NO	Hidikator	Pernyataan
1	Kejelasan petunjuk penggunaan modul	1
2	Kesesuaian modul dengan tujuan yang ingin dicapai	2
3	Kesesuaian modul dengan kompetensi dasar (KD)	3
4	Kesesuaian model/gambar dengan tujuan yang ingin dicapai	4
5	Sistematika penyusunan materi	5
6	Manfaat latihan yang terdapat dalam modul	6
7	Kesesuaian latihan dengan konsep	7
8	Manfaat penggunaan modul bagi guru	8
9	Manfaat penggunaan modul bagi siswa dalam menemukan	9
	konsep	
10	Manfaat modul untuk meningkatkan aktivitas siswa	10

Lampiran 18. Angket Praktikalitas Modul Kimia (Angket Respon Guru)

Angket Kepraktisan Modul Kimia Berbasis Discovery Learning dengan

Pendekatan Scientific pada materi Larutan Elektrolit dan non-Elektrolit

(Angket Respon Guru)

Angket ini dimaksudkan untuk mengumpulkan informasi dari guru tentang

praktikalitas (kepraktisan) Modul Kimia berbasis Discovery Learning dengan

Pendekatan Scientific pada kompetensi dasar 3.8 (menganalisis sifat larutan

elektrolit dan larutan nonelektrolit berdasarkan daya hantar listriknya) dan 4.8

(merancang, melakukan, dan menyimpulkan serta menyajikan hasil percobaan

untuk mengetahui sifat larutan elektrolit dan larutan non- elektrolit) di kelas X

SMA.

PETUNJUK PENGISIAN

1. Pendapat yang Bapak/Ibu berikan pada setiap butir pernyataan yang terdapat

dalam angket akan digunakan sebagai masukan untuk menyempurnakan

modul kimia yang dikembangkan.

2. Mohon berikan pendapat Bapak/Ibu dengan memberikan tanda (✓) pada

salah satu kolom dengan kategori sebagai berikut:

SS = Sangat Setuju

S = Setuju

TS = Tidak Setuju

STS = Sangat Tidak Setuju

3. Identitas Bapak/Ibu mohon diisi dengan lengkap

IDENTITAS

Nama	:
Instansi	·

No.	Pertanyaan	S	kala	Penila	aian
110.	i ertanyaan	SS	S	TS	STS
1	Petunjuk penggunaan dan pengisian modul dapat				
	dipahami.				
2	Modul yang dikembangkan sudah sesuai dengan				
	kompetensi dasar.				
3	Modul yang dikembangkan sudah sesuai dengan				
	indikator dan tujuan pembelajaran yang ingin				
	dicapai.				
4	Model/gambar yang digunakan sudah sesuai dengan				
	tujuan pembelajaran yang ingin dicapai.				
5	Materi yang disajikan di dalam modul sudah				
	sistematis.				
6	Latihan yang diberikan dapat lebih memantapkan				
	siswa dalam memahami konsep.				
7	Latihan yang disajikan sesuai dengan konsep yang				
	dipelajari.				
8	Penggunaan modul memudahkan guru dalam				
	mencapai tujuan pembelajaran.				
9	Penggunaan modul dapat memudahkan siswa dalam				
	menemukan konsep.				
10	Penggunaan modul dapat memudahkan guru untuk				
	meningkatkan aktivitas siswa dalam pembelajaran.				

SARAN:		
	 	 •••••
	 	 •••••
•••••	 	

Lampiran 19. Lembar Validasi Instrumen Praktikalitas Modul Kimia

LEMBAR VALIDASI INSTRUMEN PRAKTIKALITAS MODUL KIMIA BERBASIS DISCOVERY LEARNING DENGAN PENDEKATAN SCIENTIFIC

A. Pengantar

Angket ini disampaikan kepada Bapak/Ibu sebagai pakar/ ahli. Pemberian instrumen Modul Berbasis *Discovery Learning* dengan Pendekatan *Scientific* ini dimaksudkan untuk mendapatkan masukan tentang kelayakan instrumen yang akan digunakan untuk pengumpulan data tesis peneliti di Program Pascasarjana Pendidikan Kimia Universitas Negeri Padang yang berjudul "Pengembangan Modul Modul Kimia Berbasis *Discovery Learning* dengan Pendekatan *Scientific* pada Materi Larutan Elektrolit dan non-Elekktrolit". Peneliti sangat mengharapkan bantuan Bapak/Ibu berupa pendapat atau masukan dalam bentuk pengisian angket sesuai dengan keadaan sebenarnya, atas bantuan dan kerja sama Bapak/Ibu peneliti ucapkan terima kasih.

B. Petunjuk Pengisian

- 1. Pilihlah alternatif jawaban yang paling sesuai dengan pendapat Bapak/Ibu pada angket yang terlampir dengan cara memberi tanda cek ($\sqrt{}$) pada kolom yang tersedia. Alternatif jawaban yang tersedia adalah:
 - 3) 4 = Sangat Setuju
- 3) 2 = Tidak Setuju
- 4) 3 = Setuju
- 4) 1 = Sangat Tidak Setuju
- 2. Jika Bapak/Ibu merasa perlu memberikan catatan khusus demi perbaikan instrumen Modul Berbasis *Discovery Learning* dengan Pendekatan *Scientific* yang dibuat, mohon ditulis langsung pada saran.

VALIDASI INSTRUMEN PRAKTIKALITAS MODUL KIMIA BERBASIS DISCOVERY LEARNING DENGAN PENDEKATAN SAINTIFIK

TEN	O.S.	811	-	п	-	-	6
ID	138	N	и	Ц	Ц	Za.	200

Nama Validator

Jurusan/Spesialisasi

Brof Br. Ellisan, M. K.

			Penil	nian	
No	Kriteria Instrumen LKS	4	3	2	1
1	Keterkaitan indikator (kisi-kisi lembar praktikalitas) dengan butir pernyataan pada lembar praktikalitas (angket respon guru dan siswa)	V			
2	Pernyataan yang digunakan mencakup aspek yang mengandung praktikalitas modul	/			
3	Bahasa yang digunakan merupakan bahasa baik dan benar menurut kaidah tata bahasa Indonesia yang benar		V		

Kesimpulan Bapak/Ibu secara umum mengenai Instrumen Modul Berbasis Discovery Learning dengan Pendekatan Saintifik ini memenuhi kategori.

- (A) Dapat digunakan tanpa revisi
- (B) Dapat digunakan dengan revisi sedikit
- (C) Dapat digunakan dengan revisi sedang
- (D) Dapat digunakan dengan revisi banyak
- (E) Tidak dapat digunakan

Validator

ling of Ellisar MIL

VALIDASI INSTRUMEN PRAKTIKALITAS MODUL KIMIA BERBASIS DISCOVERY LEARNING DENGAN PENDEKATAN SAINTIFIK

IDENTITAS

Dr. Hardeli , M.Si Kimia Nama Validator

Jurusan/Spesialisasi

No	Kriteria Instrumen LKS	Penilaian								
1	Keterkaitan indikator (kisi-kisi lembar praktikalitas) dengan butir pernyataan pada lembar praktikalitas (angket respon guru dan siswa)	4	3	2	1					
2	Pernyataan yang digunakan mencakup aspek yang mengandung praktikalitas modul		V							
3	Bahasa yang digunakan merupakan bahasa baik dan benar menurut kaidah tata bahasa Indonesia yang benar	V								

Kesimpulan Bapak/Ibu secara umum mengenai Instrumen Modul Berbasis Discovery Learning dengan Pendekatan Saintifik ini memenuhi kategori.

(A)Dapat digunakan tanpa revisi

- (B) Dapat digunakan dengan revisi sedikit
- (C) Dapat digunakan dengan revisi sedang
- (D) Dapat digunakan dengan revisi banyak
- (E) Tidak dapat digunakan

Lampiran 20. Distribusi Hasil Angket Respon Siswa pada Field Test

Distribusi Jawaban Angket Respon Siswa

							Ite	em								
Siswa		Da	ya Ta	rik			Proses	Pengg	gunaar	ı		Eval	luasi		Jumlah	Jumlah Max
	1	2	3	4	5	6	7	8	9	10	11	12	13	14		
1	4	4	4	3	3	3	4	3	4	4	4	3	3	3	49	56
2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	42	56
3	4	4	4	4	4	4	4	4	4	4	4	2	4	3	53	56
4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	56	56
5	3	3	3	3	2	3	2	2	3	3	3	3	3	3	39	56
6	4	4	4	2	3	3	4	4	3	3	4	3	4	3	48	56
7	3	3	3	3	3	3	3	3	3	3	3	3	3	3	42	56
8	4	4	4	4	4	4	4	4	4	4	4	4	4	3	55	56
9	4	4	4	4	4	3	4	4	4	4	4	3	3	3	52	56
10	4	4	4	4	4	4	4	4	4	4	4	3	4	4	55	56
11	3	3	3	3	3	4	3	4	4	3	3	1	3	2	42	56
12	4	4	4	4	4	4	4	4	4	4	4	4	4	4	56	56
13	4	3	3	3	3	3	3	3	3	3	3	3	3	3	43	56
14	4	4	3	3	3	3	3	3	3	3	3	3	3	3	44	56
15	3	3	4	3	4	3	4	3	4	3	3	4	4	4	49	56
16	4	4	4	4	4	4	4	4	4	4	4	4	4	3	55	56
17	4	4	4	3	3	4	3	3	4	3	4	3	4	4	50	56
18	3	4	4	3	3	3	3	3	3	3	3	3	3	3	44	56
19	4	4	4	4	4	3	3	3	3	3	3	3	3	4	48	56
20	4	4	4	4	4	4	4	4	4	4	4	4	4	4	56	56
21	4	4	4	4	4	4	4	4	4	4	4	4	4	4	56	56
22	4	4	4	4	4	4	4	4	4	4	4	4	4	4	56	56
23	3	3	3	3	3	3	3	3	3	3	3	3	3	3	42	56
24	3	3	3	3	3	3	3	3	3	3	3	3	3	3	42	56
25	4	4	4	4	4	4	4	4	4	4	4	4	4	4	56	56
26	4	4	4	4	4	4	4	4	4	4	4	4	4	4	56	56
27	4	4	4	4	3	3	3	3	4	3	3	3	4	4	49	56
28	4	4	4	4	4	4	4	4	4	4	4	4	4	4	56	56
29	4	4	4	4	4	4	4	4	4	4	4	4	4	4	56	56
30	3	3	4	3	3	4	4	2	3	4	3	2	3	3	44	56
31	4	4	4	4	4	4	4	4	4	4	4	4	4	4	56	56
32	4	4	4	4	4	3	3	4	4	4	4	4	4	3	53	56
33	4	4	4	4	4	4	4	4	4	4	4	4	4	3	55	56
Jumlah	123	123	124	117	117	117	118	116	121	118	119	110	119	113	1655	1848
Jumlah/Komp			604			590					461					
Jumlah Max			660					660				52	28			

Lampiran 21. Analisis Hasil Angket Respon Siswa pada Field Test

Analisis Praktikalitas Modul Masing-Masing Komponen

No	Komponen yang Dinilai	Jumlah Nilai Tiap Komponen	Jumlah Nilai Max Tiap Komponen	P	Pe	P-Pe	1-Pe	K	Tingkat Praktikalitas
1	Daya Tarik	604	660	0,92	0,08	0,83	0,92	0,91	Sangat Tinggi
2	Proses Penggunaan	590	660	0,89	0,11	0,79	0,89	0,88	Sangat Tinggi
3	Evaluasi	461	528	0,87	0,13	0,75	0,87	0,85	Sangat Tinggi

Analisis Praktikalitas Modul Secara Keseluruhan

Siswa	Jumlah Nilai yang Diberi	Jumlah Nilai Maksimal	P	Pe	P- Pe	1- Pe	K	Tingkat Praktikalitas
1	49	56	0,88	0,13	0,75	0,88	0,86	Sangat Tinggi
2	42	56	0,75	0,25	0,50	0,75	0,67	Tinggi
3	53	56	0,95	0,05	0,89	0,95	0,94	Sangat Tinggi
4	56	56	1,00	0,00	1,00	1,00	1,00	Sangat Tinggi
5	39	56	0,70	0,30	0,39	0,70	0,56	Sedang
6	48	56	0,86	0,14	0,71	0,86	0,83	Sangat Tinggi
7	42	56	0,75	0,25	0,50	0,75	0,67	Tinggi
8	55	56	0,98	0,02	0,96	0,98	0,98	Sangat Tinggi
9	52	56	0,93	0,07	0,86	0,93	0,92	Sangat Tinggi
10	55	56	0,98	0,02	0,96	0,98	0,98	Sangat Tinggi
11	42	56	0,75	0,25	0,50	0,75	0,67	Tinggi
12	56	56	1,00	0,00	1,00	1,00	1,00	Sangat Tinggi
13	43	56	0,77	0,23	0,54	0,77	0,70	Tinggi
14	44	56	0,79	0,21	0,57	0,79	0,73	Tinggi
15	49	56	0,88	0,13	0,75	0,88	0,86	Sangat Tinggi
16	55	56	0,98	0,02	0,96	0,98	0,98	Sangat Tinggi
17	50	56	0,89	0,11	0,79	0,89	0,88	Sangat Tinggi
18	44	56	0,79	0,21	0,57	0,79	0,73	Tinggi
19	48	56	0,86	0,14	0,71	0,86	0,83	Sangat Tinggi
20	56	56	1,00	0,00	1,00	1,00	1,00	Sangat Tinggi
21	56	56	1,00	0,00	1,00	1,00	1,00	Sangat Tinggi
22	56	56	1,00	0,00	1,00	1,00	1,00	Sangat Tinggi
23	42	56	0,75	0,25	0,50	0,75	0,67	Tinggi
24	42	56	0,75	0,25	0,50	0,75	0,67	Tinggi
25	56	56	1,00	0,00	1,00	1,00	1,00	Sangat Tinggi
26	56	56	1,00	0,00	1,00	1,00	1,00	Sangat Tinggi
27	49	56	0,88	0,13	0,75	0,88	0,86	Sangat Tinggi
28	56	56	1,00	0,00	1,00	1,00	1,00	Sangat Tinggi
29	56	56	1,00	0,00	1,00	1,00	1,00	Sangat Tinggi
30	44	56	0,79	0,21	0,57	0,79	0,73	Tinggi
31	56	56	1,00	0,00	1,00	1,00	1,00	Sangat Tinggi
32	53	56	0,95	0,05	0,89	0,95	0,94	Sangat Tinggi
33	55	0,98	Sangat Tinggi					
Tingka	t Praktikalitas Se	cara Keseluruhai	n				0,87	Sangat Tinggi

Lampiran 22. Distribusi dan Analisis Hasil Angket Respon Guru pada *Field Test*

Distribusi Hasil Angket Respon Guru

Guru				Ite	m P	erny	yata	an			Jumlah	Nilai
Guru	1	2	3	4	5	6	7	8	9	10	Nilai	Max
Bustami, S.Pd	3	4	4	4	3	3	3	3	4	4	35	40

Analisis Hasil Angket Respon Guru

P	Pe	P-Pe	1-Pe	K	Tingkat Praktikalitas
0,88	0,13	0,75	0,88	0,86	Sangat Tinggi

Lampiran 23. Rencana Pelaksanaan Pembelajaran dengan Menggunakan Modul Kimia

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

Satuan Pendidikan : SMA

Mata Pelajaran : Kimia

Kelas / Semester : X / 2

Topik : Larutan Elektrolit dan non-elektrolit

Alokasi Waktu : 9 x 40 menit

A. Kompetensi Inti (KI)

1. Menghayati dan mengamalkan ajaran agama yang dianutnya.

- 2. Menghayati dan mengamalkan perilaku jujur, disiplin, tanggungjawab, peduli (gotong royong, kerjasama, toleran, damai), santun, responsif dan pro-aktif dan menunjukkan sikap sebagai bagian dari solusi atas berbagai permasalahan dalam berinteraksi secara efektif dengan lingkungan sosial dan alam serta dalam menempatkan diri sebagai cerminan bangsa dalam pergaulan dunia.
- 3. Memahami, menerapkan, menganalisis pengetahuan faktual, konseptual, prosedural berdasarkan rasa ingin tahunya tentang ilmu pengetahuan, teknologi, seni, budaya, dan humaniora dengan wawasan kemanusiaan, kebangsaan, kenegaraan, dan peradaban terkait penyebab fenomena dan kejadian, serta menerapkan pengetahuan prosedural pada bidang kajian yang spesifik sesuai dengan bakat dan minatnya untuk memecahkan masalah.
- 4. Mengolah, menalar, dan menyaji dalam ranah konkret dan ranah abstrak terkait dengan pengembangan dari yang dipelajarinya di sekolah secara mandiri, dan mampu menggunakan metoda sesuai kaidah keilmuan.

B. Kompetensi Dasar (KD)

3.8 Menganalisis sifat larutan elektrolit dan larutan nonelektrolit berdasarkan daya hantar listriknya.

4.8 Merancang, melakukan, dan menyimpulkan serta menyajikan hasil percobaan untuk mengetahui sifat larutan elektrolit dan larutan non-elektrolit.

C. Indikator Pencapaian Pembelajaran

- 3.8.1 Membedakan larutan elektrolit dan non elektrolit.
- 4.8.1 Merancang, melakukan eksperimen, menyimpulkan dan menyajikan hasil percobaan untuk pengelompokan larutan ke dalam larutan elektrolit kuat, elektrolit lemah, dan non-elektrolit.
- 3.8.2 Mengidentifikasi penyebab kemampuan larutan elektrolit menghantarkan arus listrik.
- 3.8.3 Mendeskripsikan bahwa larutan elektrolit dapat berupa senyawa ion dan senyawa kovalen polar.

D. Tujuan Pembelajaran

- Siswa mampu mendefenisikan larutan melalui data yang disajikan pada modul.
- 2. Siswa mampu membedakan larutan elektrolit dan non-elektrolit melalui data percobaan yang disajikan pada modul.
- 3. Siswa mampu melakukan eksperimen, menganalisis data, menyimpulkan dan melaporkan hasil eksperiment mengenai identifikasi karakteristik larutan elektrolit kuat, elektrolit lemah, dan non-elektrolit.
- 4. Siswa mampu mengelompokkan larutan kedalam larutan elektrolit kuat, elektrolit lemah, dan non-elektrolit berdasarkan karakteristik larutan tersebut melalui percobaan.
- Siswa mampu membedakan larutan elektrolit kuat, elektrolit lemah, dan non-elektrolit berdasarkan derajat ionisasinya berdasarkan data yang disajikan di dalam modul.

- Siswa mampu mengidentifikasi penyebab kemampuan larutan elektrolit dalam menghantarkan listrik berdasarkan data yang disajikan di dalam modul.
- 7. Siswa mampu mendeskripsikan bahwa larutan elektrolit dapat berupa senyawa ion dan senyawa kovalen polar.

E. Materi Pokok

Pengertian Larutan

Larutan merupakan campuran homogen antara dua komponen, yakni zat terlarut dan pelarut. Komponen yang jumlahnya lebih sedikit disebut dengan zat terlarut sedangkan komponen yang jumlahnya lebih banyak disebut pelarut.

Larutan Elektrolit dan non-Elektrolit

Komponen yang terlarut dalam larutan akan mempengaruhi sifat hantaran listrik larutan tersebut. Ada larutan yang dapat menghantarkan listrik dan adapula yang tidak dapat menghantarkan listrik. Hantaran listrik dari larutan dapat terjadi jika zat terlarut dalam larutan tersebut mengalami ionisasi (terionisasi) dan ion-ion tersebut dapat bebas bergerak dalam larutannya.

Larutan yang dapat menghantarkan listrik disebut dengan larutan elektrolit sedangkan larutan yang tidak dapat menghantarkan listrik disebut dengan larutan non-elektrolit. Berdasarkan daya hantar listriknya, larutan elektrolit dibedakan juga menjadi elektrolit kuat dan elektrolit lemah. Perbedaan masing-masinh sifat larutan dapat dilihat pada tabel berikut:

Pembeda	Larutan Elektrolit Kuat	Larutan Elektrolit Lemah	Larutan non- Elektrolit
Hantaran listrik	Kuat/besar	Lemah	Tidak menghantarkan
Ionisasi	Sempurna	Sebagian	Tidak terionisasi
Jumlah ion dalam larutan	Banyak	Sedikit	Tidak ada ion
Bola lampu alat uji elktrolit	Menyala terang	Menyala redup	Tidak menyala
Gelembung gas pada elektroda	Banyak	Sedikit	Tidak ada

F. Model/ Metode Pembelajaran

- 1. Model Discovery Learning
- 2. Pendeketan Scientific

G. Sumber Belajar

Modul Kimia Berbasis Discovery Learning dengan Pendekatan Scientific

H. Kegiatan Pembelajaran

Pertemuan ke 1

Kegiatan	Deskripsi Kegiatan	Alokasi
		Waktu
Pendahuluan	Komunikasi	10 menit
	 Guru membuka proses pembelajaran dengan mengucapkan salam. Guru memeriksa kesiapan ruangan, alat, media dan peserta didik untuk mengikuti proses pembelajaran. Peserta didik berdoa sebelum memulai pelajaran. Guru mengecek kehadiran peserta didik Guru menyampaikan judul materi pelajaran yang akan dipelajari serta tujuan pembelajaran. Guru membagikan modul pembelajaran kepada peserta 	
	didik. 7. Peserta didik mendapatkan modul pembelajaran.	
	Apersepsi Memberikan gambaran tentang materi yang akan diajarkan yaitu materi larutan elektrolit dan non-elektrolit. Motivasi Memberikan gambaran tentang manfaat mempelajari larutan elektrolit dan non-elektrolit.	

Inti <u>Kegiatan Belajar 1.a</u>

90 menit

Stimulasi / Mengamati

Guru menuntun siswa untuk mengamati gambar serta pernyataan yang terdapat pada kegiatan stimulasi/ mengamati beberapa jenis campuran yang ditampilkan dalam modul yang telah dibagikan.

Mengidentifikasi Masalah / Menanya

- 1. Guru membimbing siswa untuk dapat mengidentifikasi masalah berdasarkan kegiatan stimulasi/ mengamati.
- 2. Siswa berdiskusi dengan teman sebangku dan menuliskan masalah yang ditemukan pada kolom yang telah tersedia.
- Guru menuntun siswa untuk dapat menuliskan rumusan masalah (dalam bentuk pertanyaan) yang telah didapatkan.

Mengumpulkan Data / Mengumpulkan Informasi

- Guru menuntun siswa untuk menganalisis gambar / model terbentuknya larutan gula dan larutan gula pada kegiatan mengumpulkan data yang terdapat di dalam modul yang telah dibagikan.
- 2. Siswa berdiskusi dengan teman sebangku, mengumpulkan data/informasi dengan menganalisis gambar/model dan menjawab pertanyaan pada kegiatan mengumpulkan data yang terdapat di dalam modul yang telah dibagikan.

Mengolah Data / Mengumpulkan Informasi

- 1. Guru menuntun siswa untuk mengolah informasi yang telah didapatkan dari kegiatan sebelumnya.
- 2. Siswa menuliskan hasil pengolahan data pada kolom yang tersedeia di dalam modul yang dibagikan.

Memverifikasi Data / Mengasosiasi

1. Siswa menuliskan kembali rumusan masalah mereka ke

- dalam kolom yang telah tersedia pada modul.
- Siswa menghubungkan data yang didapatkan dari pengumpulan data untuk menjawab rumusan masalah yang telah ditetapkan.

Menarik Kesimpulan / Mengkomunikasikan

- Guru membimbing siswa untuk dapat menyimpulkan konsep larutan yang ditemukan dari kegiatan pembelajaran sebelumnya.
- 2. Siswa menuliskan kesimpulan yang mereka dapatkan pada kolom yang tersedia dalam modul yang dibagikan.

Kegiatan Belajar 1.b

Stimulasi / Mengamati

Guru menuntun siswa untuk mengamati gambar serta pernyataan yang terdapat pada kegiatan stimulasi/ mengamati pengujian hantaran listrik larutan garam dan larutan gula yang ditampilkan dalam modul yang telah dibagikan.

Mengidentifikasi Masalah / Menanya

- 1. Guru membimbing siswa untuk dapat mengidentifikasi masalah berdasarkan kegiatan stimulasi/ mengamati.
- 2. Siswa berdiskusi dengan teman sebangku dan menuliskan masalah yang ditemukan pada kolom yang telah tersedia.
- Guru menuntun siswa untuk dapat menuliskan rumusan masalah (dalam bentuk pertanyaan) yang telah didapatkan.

Mengumpulkan Data / Mengumpulkan Informasi

 Guru menuntun siswa untuk menganalisis gambar / model pengujian hantaran listrik beberapa larutan (larutan garam, air aki, larutan gula dan larutan urea) pada kegiatan mengumpulkan data yang terdapat di dalam modul yang telah dibagikan.

	2. Siswa berdiskusi dengan teman sebangku,	
	mengumpulkan data/informasi dengan menganalisis	
	gambar/model dan menjawab pertanyaan pada kegiatan	
	mengumpulkan data yang terdapat di dalam modul yang	
	telah dibagikan.	
	Mengolah Data / Mengumpulkan Informasi	
	1. Guru menuntun siswa untuk mengolah informasi yang	
	telah didapatkan dari kegiatan sebelumnya.	
	2. Siswa menuliskan hasil pengolahan data pada kolom	
	yang tersedeia di dalam modul yang dibagikan.	
	Memverifikasi Data / Mengasosiasi	
	1. Siswa menuliskan kembali rumusan masalah mereka ke	
	dalam kolom yang telah tersedia pada modul.	
	2. Siswa menghubungkan data yang didapatkan dari	
	pengumpulan informasi untuk menentukan jawaban	
	rumusan masalah yang telah mereka tentukan sebelumya.	
	Menarik Kesimpulan / Mengkomunikasikan	
	1. Guru membimbing siswa untuk dapat menyimpulkan	
	perbedaan larutan elektrolit dan larutan non-elektrolit	
	yang ditemukan dari kegiatan pembelajaran sebelumnya.	
	2. Siswa menuliskan kesimpulan yang mereka dapatkan	
	pada kolom yang tersedia dalam modul yang dibagikan.	
	Siswa diminta untuk mengerjakan soal latihan pada Lembar	15 menit
	Kerja 1 yang terdapat dalam modul yang diberikan.	
Penutup	1. Siswa diminta untuk menyimpulkan tentang pengertian	5 menit
	larutan serta perbedaan larutan elektrolit dan larutan non-	
	elektrolit yang telah didapat darik kegiatan pembelajaran.	
	2. Guru memberikan tugas kepada peserta didik untuk	

dikerjakan di rumah.

- 3. Guru menyampaikan kegiatan pembelajaran untuk pertemuan berikutnya, dan meminta peserta didik untuk membaca materi berikutnya terlebih dahulu di rumah.
- 4. Guru menutup pelajaran dengan memberikan salam.

I. Penilaian

Kognitif : Peserta didik mampu mendefenisikan larutan,

membedakan larutan elektrolit dan non-elektrolit

Afektif : Berpartisipasi aktif dalam mencari informasi (berdiskusi)

Pertemuan ke 2

Kegiatan	Deskripsi Kegiatan	Alokasi
		Waktu
Pendahuluan	Komunikasi	10 menit
	1. Guru membuka proses pembelajaran dengan	
	mengucapkan salam.	
	2. Guru memeriksa kesiapan ruangan, alat, media dan	
	peserta didik untuk mengikuti proses pembelajaran.	
	3. Peserta didik berdoa sebelum memulai pelajaran.	
	4. Guru mengecek kehadiran peserta didik.	
	5. Guru menanyakan kesulitan peserta didik pada materi	
	sebelumnya.	
	6. Guru meminta peserta didik untuk menanggapi	
	pertanyaan dari teman-temannya.	
	7. Guru memberikan penguatan terhadap jawaban yang	
	diberikan peserta didik atau memberikan bantuan untuk	
	menjawab pertanyaan tersebut.	
	8. Guru menyampaikan materi pelajaran yang akan	
	dipelajari serta tujuan pembelajaran.	
	9. Guru membagikan modul pembelajaran kepada peserta	
	didik.	
	10. Peserta didik mendapatkan modul pembelajaran.	
	Apersepsi	
	Mengaitan pengetian larutan elektrolit dan non-elektrolit	
	dengan karakteristik masing-masing jika diuji dengan	
	alat uji elektrolit.	
	Motivasi	
	Memberikan gambaran tentang manfaat mempelajari	
	karakteristik larutan elektrolit dan non-elektrolit	

Inti <u>Kegiatan Belajar 2</u>

90 menit

Stimulasi / Mengamati

Guru menuntun siswa untuk mengamati gambar / model pengujian hantaran listrik 3 jenis larutan (larutan garam, larutan cuka, dan larutan gula) serta pernyataan yang terdapat pada kegiatan stimulasi/ mengamati yang ditampilkan dalam modul yang telah dibagikan.

Mengidentifikasi Masalah / Menanya

- 1. Guru membimbing siswa untuk dapat mengidentifikasi masalah berdasarkan kegiatan stimulasi/ mengamati.
- 2. Siswa berdiskusi dengan teman sebangku dan menuliskan masalah yang ditemukan pada kolom yang telah tersedia.
- 3. Guru menuntun siswa untuk dapat menuliskan rumusan masalah yang telah didapatkan dalam bentuk pertanyaan.

Mengumpulkan Data / Mengumpulkan Informasi

- 1. Guru membimbing siswa untuk mengumpulkan data melalui praktikum pengujian daya hantar listrik larutan.
- 2. Siswa dibagi menjadi beberapa kelompok. Masing-masing kelompok terdiri dari 5 orang.
- 3. Siswa diminta untuk membaca penuntun praktikum yang terdapat di dalam modul yang dibagikan.
- 4. Guru membimbing siswa melakukan kegiatan praktikum secara berkelompok sesuai dengan langkah kerja yang terdapat pada modul.
- 5. Siswa mencatat data sementara yang didapatkan dari kegiatan praktikum.

Mengolah Data / Mengumpulkan Informasi

- 1. Siswa berdiskusi dalam kelompok untuk mengelompokkan larutan yang uji menjadi 3 kriteria.
- 2. Siswa menuliskan hasil pengolahan data pada kolom yang tersedia di dalam modul yang dibagikan.

	Memverifikasi Data / Mengasosiasi	
	1. Siswa menuliskan kembali rumusan masalah mereka ke	
	dalam kolom yang telah tersedia pada modul.	
	2. Siswa menghubungkan data yang didapatkan dari	
	praktikum untuk untuk menjawab rumusan masalah yang	
	telah mereka tentukan sebelumya.	
	Menarik Kesimpulan / Mengkomunikasikan	
	1. Guru membimbing siswa untuk dapat menyimpulkan	
	karakteristik larutan elektrolit kuat, elektrolit lemah, dan	
	non-elektrolit yang ditemukan dari kegiatan	
	pembelajaran sebelumnya.	
	2. Siswa mengelompokkan larutan yang diuji ke dalam	
	larutan elektrolit kuat, larutan elektrolit lemah, dan	
	larutan non-elektrolit.	
	3. Siswa menuliskan kesimpulan yang mereka dapatkan	
	pada kolom yang tersedia dalam modul yang dibagikan.	
	Siswa diminta untuk mengerjakan soal latihan pada Lembar	15 menit
	Kerja 2 yang terdapat dalam modul yang diberikan.	
Penutup	1. Siswa diminta untuk menyimpulkan tentang karakteristik	5 menit
	larutan elektrolit kuat, elektrolit lemah, dan non-elektrolit	
	berdasarkan data percobaan yang telah dilakukan.	
	2. Guru memberikan tugas kepada peserta didik untuk	
	dikerjakan di rumah.	
	3. Guru menyampaikan kegiatan pembelajaran untuk	
	pertemuan berikutnya, dan meminta peserta didik untuk	
	membaca materi berikutnya terlebih dahulu di rumah.	
	4. Guru menutup pelajaran dengan memberikan salam.	

J. Penilaian

Kognitif : Peserta didik mampu menjelaskan pengertian perubahan

kimia dan menjelaskan ciri-ciri perubahan kimia

Psikomotor : Siswa mampu melakukan percobaan perubahan pengujian

hantaran listrik larutan

Afektif : Berpartisipasi aktif dalam mencari informasi, bekerja sama

dan berdiskusi dalam kelompok.

Pertemuan ke 3

Kegiatan	Deskripsi Kegiatan	Alokasi
		Waktu
Pendahuluan	Komunikasi	10
	1. Guru membuka proses pembelajaran dengan	menit
	mengucapkan salam.	
	2. Guru memeriksa kesiapan ruangan, alat, media dan	
	peserta didik untuk mengikuti proses pembelajaran.	
	3. Peserta didik berdoa sebelum memulai pelajaran.	
	4. Guru mengecek kehadiran peserta didik	
	5. Guru menanyakan kesulitan peserta didik pada materi	
	sebelumnya.	
	6. Guru meminta peserta didik untuk menanggapi	
	pertanyaan dari teman-temannya.	
	7. Guru memberikan penguatan terhadap jawaban yang	
	diberikan peserta didik atau memberikan bantuan untuk	
	menjawab pertanyaan tersebut.	
	8. Guru menyampaikan materi pelajaran yang akan	
	dipelajari serta tujuan pembelajaran.	
	11. Guru membagikan modul pembelajaran kepada peserta	
	didik.	
	12. Peserta didik mendapatkan modul pembelajaran.	
	Apersepsi	
	Guru mengaitkan karakteristik larutan elektrolit dengan	
	proses ionisasi.	
	Motivasi	
	Memberikan pertanyaan kepada siswa, Mengapa	
	elektrolit menghantarkan listrik?	

Inti <u>Kegiatan Belajar 3.a</u>

90

menit

Stimulasi / Mengamati

Guru menuntun siswa untuk mengamati gambar/model pada level mikroskopik beberapa senyawa dalam air (NaCl, CH₃COOH, dan gula) serta pernyataan yang terdapat pada kegiatan stimulasi/ mengamati yang ditampilkan dalam modul yang telah dibagikan.

Mengidentifikasi Masalah / Menanya

- 1. Guru membimbing siswa untuk dapat mengidentifikasi masalah berdasarkan kegiatan stimulasi/ mengamati.
- 2. Siswa berdiskusi dengan teman sebangku dan menuliskan masalah yang ditemukan pada kolom yang telah tersedia.
- 3. Guru menuntun siswa untuk dapat menuliskan rumusan masalah yang telah didapatkan dalam bentuk pertanyaan.

Mengumpulkan Data / Mengumpulkan Informasi

- Siswa diminta membaca uraian ringkas materi tentang ionisasi yang disajikan dalam modul yang telah dibagikan.
- 2. Guru menuntun siswa untuk menganalisis gambar / model mikroskopik larutan garam (NaCl), larutan CH₃COOH, dan larutan gula pada kegiatan mengumpulkan data yang terdapat di dalam modul yang telah dibagikan.
- 3. Siswa berdiskusi dengan teman sebangku, mengumpulkan data/informasi dengan menganalisis gambar/model dan menjawab pertanyaan pada kegiatan mengumpulkan data yang terdapat di dalam modul yang telah dibagikan.

Mengolah Data / Mengumpulkan Informasi

 Guru menuntun siswa untuk mengolah informasi yang telah didapatkan dari kegiatan sebelumnya. 2. Siswa menuliskan hasil pengolahan data pada kolom yang tersedia di dalam modul yang dibagikan.

Memverifikasi Data / Mengasosiasi

- Siswa menuliskan kembali rumusan masalah mereka ke dalam kolom yang telah tersedia pada modul.
- Siswa menghubungkan data yang didapatkan dari pengumpulan informasi untuk menentukan jawaban dari rumusan masalah yang telah mereka tentukan sebelumnya.

Menarik Kesimpulan / Mengkomunikasikan

- Guru membimbing siswa untuk dapat menyimpulkan karakteristik larutan elektrolit kuat, elektrolit lemah, dan non-elektrolit berdasarkan deraja ionisasi yang ditemukan dari kegiatan pembelajaran sebelumnya.
- 2. Siswa menuliskan kesimpulan yang mereka dapatkan pada kolom yang tersedia dalam modul yang dibagikan.

Kegiatan Belajar 3.b

Stimulasi / Mengamati

Guru menuntun siswa untuk mengamati gambar/model pada level mikroskopik tentang pengujian hantaran listrik larutan garam dan larutan gula serta pernyataan yang terdapat pada kegiatan stimulasi/ mengamati penyebab hantaran listrik larutan elektrolit yang ditampilkan dalam modul yang telah dibagikan.

Mengidentifikasi Masalah / Menanya

- 1. Guru membimbing siswa untuk dapat mengidentifikasi masalah berdasarkan kegiatan stimulasi/ mengamati.
- 2. Siswa berdiskusi dengan teman sebangku dan menuliskan masalah yang ditemukan pada kolom yang telah tersedia.
- 3. Guru menuntun siswa untuk dapat menuliskan rumusan

masalah yang telah didapatkan dalam bentuk pertanyaan.

Mengumpulkan Data / Mengumpulkan Informasi

- Guru menuntun siswa untuk menganalisis gambar / model pada level mikroskopik untuk membandingkan hantaran listrik larutan garam dengan padatan garam pada kegiatan mengumpulkan data yang terdapat di dalam modul yang telah dibagikan.
- Siswa berdiskusi dengan teman sebangku, mengumpulkan data/informasi dengan menganalisis gambar/model dan menjawab pertanyaan pada kegiatan mengumpulkan data yang terdapat di dalam modul yang telah dibagikan.

Mengolah Data / Mengumpulkan Informasi

- 1. Guru menuntun siswa untuk mengolah informasi yang telah didapatkan dari kegiatan sebelumnya.
- 2. Siswa menuliskan hasil pengolahan data pada kolom yang tersedeia di dalam modul yang dibagikan.

Memverifikasi Data / Mengasosiasi

- Siswa menuliskan kembali rumusan masalah mereka ke dalam kolom yang telah tersedia pada modul.
- Siswa menghubungkan data yang didapatkan dari pengumpulan informasi untuk menentukan jawaban rumusan masalah yang telah mereka tentukan sebelumnya.

Menarik Kesimpulan / Mengkomunikasikan

- Guru membimbing siswa untuk dapat menyimpulkan penyebab hantaran listrik pada larutan elektrolit yang ditemukan dari kegiatan pembelajaran sebelumnya.
- 2. Siswa menuliskan kesimpulan yang mereka dapatkan pada kolom yang tersedia dalam modul yang dibagikan.

Kegiatan Belajar 4

Stimulasi / Mengamati

Guru menuntun siswa untuk mengamati data pada tabel jenis senyawa dan sifat hantaran listriknya serta pernyataan yang terdapat pada kegiatan stimulasi/mengamati jenis senyawa yang bersifat elektrolit yang ditampilkan dalam modul.

Mengidentifikasi Masalah / Menanya

- 1. Guru membimbing siswa untuk dapat mengidentifikasi masalah berdasarkan kegiatan stimulasi/ mengamati.
- 2. Siswa berdiskusi dengan teman sebangku dan menuliskan masalah yang ditemukan pada kolom yang telah tersedia.
- 3. Guru menuntun siswa untuk dapat menuliskan rumusan masalah yang telah didapatkan dalam bentuk pertanyaan.

Mengumpulkan Data / Mengumpulkan Informasi

- Guru menuntun siswa untuk menganalisis gambar / model pada level mikroskopik untuk membandingkan hantaran listrik larutan garam, lelehan garam dan padatan garam pada kegiatan mengumpulkan data yang terdapat di dalam modul yang telah dibagikan.
- Siswa berdiskusi dengan teman sebangku, mengumpulkan data/informasi dengan menganalisis gambar/model dan menjawab pertanyaan pada kegiatan mengumpulkan data yang terdapat di dalam modul yang telah dibagikan.
- Gru menuntun siswa untuk menganalisis gambar / model pada level mikroskopik untuk membandingkan hantaran listrik larutan HCl dengan lelehan HCl pada kegiatan mengumpulkan data yang terdapat di dalam modul yang telah dibagikan.
- Siswa berdiskusi dengan teman sebangku, mengumpulkan data/informasi dengan menganalisis

	gambar/model dan menjawab pertanyaan pada kegiatan	
	mengumpulkan data yang terdapat di dalam modul yang	
	telah dibagikan.	
	Mengolah Data / Mengumpulkan Informasi	
	1. Guru menuntun siswa untuk mengolah informasi yang	
	telah didapatkan dari kegiatan sebelumnya.	
	2. Siswa menuliskan hasil pengolahan data pada kolom yang	
	tersedeia di dalam modul yang dibagikan.	
	Memverifikasi Data / Mengasosiasi	
	1. Siswa menuliskan kembali hipotesis awal mereka ke	
	dalam kolom yang telah tersedia pada modul.	
	2. Siswa menghubungkan data yang didapatkan dari	
	pengumpulan informasi untuk menentukan jawaban dari	
	rumusan masalah yang telah mereka tentukan	
	sebelumnya.	
	Menarik Kesimpulan / Mengkomunikasikan	
	1. Guru membimbing siswa untuk dapat menyimpulkan	
	jenis senyawa yang merupakan elektrolit yang ditemukan	
	dari kegiatan pembelajaran sebelumnya.	
	2. Siswa menuliskan kesimpulan yang mereka dapatkan	
	pada kolom yang tersedia dalam modul yang dibagikan.	
	Siswa diminta untuk mengerjakan latihan pada Lembar Kerja	15
	3 daan Lembar Kerja 4 untuk meningkatkan pemahamannya	menit
	terhadap materi yang diperlajari.	
Penutup	1. Peserta didik diminta untuk menyimpulkan tentang	5 menit
	pengertian penyebab hantaran listrik dan jenis senyawa	
	yang merupakan elektrolit.	
	2. Guru memberikan penghargaan (reword) kepada	
	kelompok terbaik.	

- 3. Guru memberikan tugas kepada peserta didik untuk dikerjakan di rumah.
- 4. Guru menutup pelajaran dengan memberikan salam.

K. Penilaian

Kognitif

: Siswa mampu membedakan larutan elektrolit kuat, elektrolit lemah dan non-elektrolit berdasarkan derajat ionisasi, mengidentifikasi penyebab hantaran listrik larutan elektrolit, dan mendeskripsikan jenis senyawa yang merupakan elektrolit.

Afektif

: Berpartisipasi aktif dalam mencari informasi, berdiskusi dan menghargai orang lain pendapat.

Lampiran 24. Kisi-kisi Lembar Validasi RPP Menggunakan Modul Berbasis

Discovery Learning dengan pendekatan Scientific

No	Aspek yang	Kisi – Kisi
	diamati	
1	Komponen RPP	a. Ketepatan Penjabaran KD kedalam Indikator
		b. Ketepatan Penjabaran Indikator kedalam
		Tujuan Pembelajaran
		c. Penyajian Materi sesuai dengan KI dan KD
		d. Kesesuaian dengan modul
		e. Kesesuaian jumlah tujuan pembelajaran
		dengan waktu yang disediakan
		f. Kesesuaian aspek penilaian dengan instrumen
		penilaian hasil belajar
2	Kegiatan	a. Menggunakan model Discovery Learning
	Pembelajaran	sesuai dengan pendekatan pembelajaran
		scientific
		b. Memfasilitasi siswa untuk berpikir ilmiah
		c. Menyajikan fase-fase yang harus diikuti guru
		dalam pelaksanaan pembelajaran
		d. Kejelasan langkah-langkah dalam pelaksanaan
		pembelajaran
		e. Memfasilitasi siswa untuk membentuk
		pengetahuan tentang kimia
		f. Membantu siswa mengkronstruksi
		pengetahuannya sendiri
		g. Memotivasi siswa untuk bertanya dan
		berdiskusi dalam pembelajaran
3	Bahasa dan	a. Menggunakan bahasa Indonesia yang baik
	Keterbacaan	dan benar menurut Kaidah Bahasa Indonesia (EYD)
		b. Bahasa yang digunakan mudah dipahami
		c. Bahasa yang digunakan tidak menimbulkan
		makna ganda
		d. Ukuran huruf jelas dan dapat dibaca

Lampiran 25. Lembar Validasi RPP Menggunakan Modul Kimia Berbasis Discovery Learning dengan Pendekatan Scientific

LEMBAR VALIDASI RPP MENGGUNAKAN MODUL KIMIA BERBASIS DISCOVERY LEARNING DENGAN PENDEKATAN SCIENTIFIC PADA LARUTAN ELEKTROLIT DAN NON-ELEKTROLIT

Lembar validasi ini dimaksudkan untuk mengumpulkan informasi tentang komponen, kegiatan pembelajaran, dan bahasa yang digunakan pada RPP penggunaan Modul Kimia Berbasis *Discovery Learning* dengan Pendekatan *Scientific* pada Materi Larutan Elektrolit dan non-Elektrolit, yakni pada kompetensi dasar 3.8 (menganalisis sifat larutan elektrolit dan larutan nonelektrolit berdasarkan daya hantar listriknya) dan 4.8 (merancang, melakukan, dan menyimpulkan serta menyajikan hasil percobaan untuk mengetahui sifat larutan elektrolit dan larutan non- elektrolit) di kelas X SMA.

PETUNJUK PENGISIAN

- Melalui lembar penilaian ini Bapak/Ibu diminta pendapatnya tentang isi dari Modul Berbasis Discovery Learning dengan Pendekatan Scientific yang dikembangkan.
- Pendapat yang Bapak/Ibu berikan pada setiap butir pernyataan yang terdapat dalam lembar penilaian ini akan digunakan sebagai masukan untuk menyempurnakan Modul Berbasis Discovery Learning dengan Pendekatan Scientific.
- 3. Mohon berikan pendapat Bapak/Ibu dengan memberikan tanda (√), pada salah satu kolom angka 1, 2, 3 atau 4. Angka 1 sampai dengan 4 pada skala jawaban mempunyai kriteria skor penilaian yang dapat dilihat pada rubrik lembar validasi.

NO	ACDELY WANG DINIH AT		SK	OR	
NO	ASPEK YANG DINILAI	1	2	3	4
a	Komponen RPP				
	1. Penjabaran KD ke dalam indikator sudah				
	tepat				
	2. Penjabaran indikator ke dalam tujuan				
	pembelajaran sudah tepat				
	3. Materi yang disajikan dalam RPP sesuai				
	dengan tuntutan KI dan KD				
	4. RPP sesuai dengan Modul yang				
	dikembangkan				
	5. Jumlah tujuan pembelajaran sesuai dengan				
	waktu yang disediakan				
	6. Aspek penilaian dengan sesuai dengan				
1	instrumen penilaian hasil belajar		1		
b.	Kegiatan Pembelajaran		1		
	1. RPP menggunakan model <i>Discovery</i>				
	Learning sesuai dengan pendekatan				
	pembelajaran scientific				
	2. Kegiatan pada RPP dapat memfasilitasi				
	siswa untuk berfikir ilmiah				
	3. RPP menyajikan langkah-langkah yang harus diikuti guru dalam proses				
	harus diikuti guru dalam proses pembelajaran				
	4. Langkah pembelajaran dalam RPP sudah				
	jelas				
	5. Kegiatan pembelajaran dalam RPP dapat				
	memfasilitasi siswa untuk membangun				
	pengetahuan kimia				
	6. Kegiatan pembelajaran dalam RPP dapat				
	membantu siswa mengkontruksi				
	pengetahuannya sendiri				
	7. Kegiatan pembelajaran dapat memotivasi				
	siswa untuk bertanya dan berdiskusi				
c	Bahasa dan Keterbacaan				
	1. Bahasa yang digunakan dalam RPP sesuai				
	dengan Kaidah Bahasa Indonesia (EYD)				
	2. Bahasa dalam RPP mudah dipahami				
	3. Bahasa yang digunakan dalam RPP tidak				
	menimbulkan makna ganda				
	4. Ukuran huruf pada RPP jelas dan dapat				
	dibaca				

SARA	N:			
Petunju				
	ın Bapak/Ibı ki arti sebag		nda (√) pad	a kolom A, B atau C. huruf A, B dan C
Pe	ndekatan <i>Sc</i>		a Materi Lai	Berbasis <i>Discovery Learning</i> dengar rutan Elektrolit dan non-Elekktrolit yang
Pe	ndekatan S		da Materi	Berbasis <i>Discovery Learning</i> dengar Larutan Elektrolit dan non-Elekktroli [,] isi
Pe	ndekatan S		da Materi	Berbasis <i>Discovery Learning</i> dengar Larutan Elektrolit dan non-Elekktroli
	A	В	С	
				Padang,2016 Validator
				()

Lampiran 26. Lembar Validasi Instrumen Validasi RPP Menggunakan Modul Kimia Berbasis *Discovery Learning* dengan Pendekatan *Scientific*

Lembar validasi ini bertujuan untuk mengetahui keabsahan instrumen yang dirancang untuk melihat kevalidan produk berupa RPP berbasis discovery learning dengan pendekatan saintifik.

Petunjuk

- Berilah tanda ceklis (√) pada kolom yang disediakan sesuai dengan penilaian Bapak/Ibu dengan ketentuan :
 - 0 : tidak valid
 - 1 : kurang valid
 - 2 : cukup valid
 - 3 : valid
 - 4 : sangat valid

No	Aspek yang dinilai		Penilaian					
		0	1	2	3	4		
1	Keterkaitan aspek yang dinilai dengan kisi-kisi				1			
2	Keterkaitan kisi-kisi dengan pernyataan					V		
3	Kesesuaian pernyataan dengan tujuan					1		
4	Kejelasan bahasa dan struktur kalimat yang digunakan				V			

Penilaian Secara Umum Uraian B D A E umum secara Penilaian terhadap instrumen validitas Berbasis Discovery Learning dengan Pendekatan Saintifik. Keterangan: : dapat digunakan tanpa revisi : dapat digunakan dengan revisi sedikit C : dapat digunakan dengan revisi sedang D : dapat digunakan dengan banyak sekali E : tidak dapat digunakan 2. Saran - saran Padang......2016

LEMBAR VALIDASI RPP BERBASIS DISCOVERY LEARNING DENGAN PENDEKATAN SAINTIFIK

Lembar validasi ini bertujuan untuk mengetahui keabsahan instrumen yang dirancang untuk melihat kevalidan produk berupa RPP berbasis discovery learning dengan pendekatan saintifik.

Petunjuk

 Berilah tanda ceklis (√) pada kolom yang disediakan sesuai dengan penilaian Bapak/Ibu dengan ketentuan :

0 : tidak valid

1 : kurang valid

2 : cukup valid

3 : valid

4 : sangat valid

No	Aspek yang dinilai	Per		nilai	an		Ket
		0	1	2	3	4	
1	Keterkaitan aspek yang dinilai dengan kisi-kisi				V		
2	Keterkaitan kisi-kisi dengan pernyataan				V		
3	Kesesuaian pernyataan dengan tujuan					V	
4	Kejelasan bahasa dan struktur kalimat yang digunakan					V	

	Uraian	A	В	C	D	E
RPP Be	secara umum nstrumen validitas rbasis <i>Discovery</i> dengan Pendekatan	/				
Kete	erangan :					
A	: dapat digunakar	tanpa re	visi			
В	: dapat digunakar			dikit		
C	: dapat digunakar					
D	: dapat digunakar					
E	: tidak dapat digu					
				Padan	g, Valid	201 ator

Lampiran 27. Lembar Hasil Validasi RPP

LEMBAR VALIDASI RPP MENGGUNAKAN MODUL KIMIA BERBASIS DISCOVERY LEARNING DENGAN PENDEKATAN SCIENTIFIC PADA LARUTAN ELEKTROLIT DAN NON-ELEKTROLIT

Lembar validasi ini dimaksudkan untuk mengumpulkan informasi tentang komponen, kegiatan pembelajaran, dan bahasa yang digunakan pada RPP penggunaan Modul Kimia Berbasis *Discovery Learning* dengan Pendekatan *Scientific* pada Materi Larutan Elektrolit dan non-Elektrolit, yakni pada kompetensi dasar 3.8 (menganalisis sifat larutan elektrolit dan larutan nonelektrolit berdasarkan daya hantar listriknya) dan 4.8 (merancang, melakukan, dan menyimpulkan serta menyajikan hasil percobaan untuk mengetahui sifat larutan elektrolit dan larutan non- elektrolit) di kelas X SMA.

PETUNJUK PENGISIAN

- Melalui lembar penilaian ini Bapak/Ibu diminta pendapatnya tentang isi dari Modul Berbasis Discovery Learning dengan Pendekatan Scientific yang dikembangkan.
- Pendapat yang Bapak/Ibu berikan pada setiap butir pernyataan yang terdapat dalam lembar penilaian ini akan digunakan sebagai masukan untuk menyempurnakan Modul Berbasis Discovery Learning dengan Pendekatan Scientific.
- 3. Mohon berikan pendapat Bapak/Ibu dengan memberikan tanda (√), pada salah satu kolom angka 1, 2, 3 atau 4. Angka 1 sampai dengan 4 pada skala jawaban mempunyai kriteria skor penilaian yang dapat dilihat pada rubrik lembar validasi.

			SK	OR	7610
NO	ASPEK YANG DINILAI	1	2	3	4
8	Komponen RPP				
a	Penjabaran KD ke dalam indikator sudah tepat			V	
	Penjabaran indikator ke dalam tujuan pembelajaran sudah tepat			V	
	Materi yang disajikan dalam RPP sesuai dengan tuntutan KI dan KD			V	
	4. RPP sesuai dengan Modul yang dikembangkan				V
	Jumlah tujuan pembelajaran sesuai dengan waktu yang disediakan				V
	6. Aspek penilaian dengan sesuai dengan instrumen penilaian hasil belajar			V	
b.	Kegiatan Pembelajaran				
	RPP menggunakan model Discovery Learning sesuai dengan pendekatan pembelajaran scientific				V
	Kegiatan pada RPP dapat memfasilitasi siswa untuk berfikir ilmiah			V	
	RPP menyajikan langkah-langkah yang harus diikuti guru dalam proses pembelajaran				·
	4. Langkah pembelajaran dalam RPP sudah jelas			V	
	Kegiatan pembelajaran dalam RPP dapat memfasilitasi siswa untuk membangun pengetahuan kimia			L	
	Kegiatan pembelajaran dalam RPP dapat membantu siswa mengkontruksi pengetahuannya sendiri				U
	Kegiatan pembelajaran dapat memotivasi siswa untuk bertanya dan berdiskusi			V	
C	Bahasa dan Keterbacaan				
	Bahasa yang digunakan dalam RPP sesuai dengan Kaidah Bahasa Indonesia (EYD)			V	
	2. Bahasa dalam RPP mudah dipahami	Sal		V	
	Bahasa yang digunakan dalam RPP tidak menimbulkan makna ganda			U	
	4. Ukuran huruf pada RPP jelas dan dapat dibaca				V

SARAN:
KEPUTUSAN:
Petunjuk:
Silahkan Bapak/Ibu berikan tanda (√) pada kolom A, B atau C. huruf A, B dan C memiliki arti sebagai berikut:
A: RPP Penggunaan Modul Kimia Berbasis Discovery Learning dengan Pendekatan Scientific pada Materi Larutan Elektrolit dan non-Elekktrolit yang dibuat dapat dipakai tanpa revisi
B: RPP Penggunaan Modul Kimia Berbasis Discovery Learning dengan Pendekatan Scientific pada Materi Larutan Elektrolit dan non-Elekktrolit yang dapat dipakai dengan sedikit revisi
C: RPP Penggunaan Modul Kimia Berbasis Discovery Learning dengan Pendekatan Scientific pada Materi Larutan Elektrolit dan non-Elekktrolit yang dibuat tidak dapat dipakai
A B C
Padang2016
Validator
Enf Def Ellizar Ald
lat postilizar. 411

	ASPEK YANG DINILAI		SK	OR	
NO		1	2	3	4
1	Komponen RPP				
	Penjabaran KD ke dalam indikator sudah				
	tepat			-	
	Penjabaran indikator ke dalam tujuan pembelajaran sudah tepat			1	
	Materi yang disajikan dalam RPP sesuai				,
	dengan tuntutan KI dan KD			1	
	4. RPP sesuai dengan Modul yang				
	dikembangkan		100		V
	5. Jumlah tujuan pembelajaran sesuai dengan			1	
	waktu yang disediakan			V	
	6. Aspek penilaian dengan sesuai dengan				,
	instrumen penilaian hasil belajar			1	
).	Kegiatan Pembelajaran				
	1. RPP menggunakan model Discovery				
	Learning sesuai dengan pendekatan			,	
	pembelajaran scientific			V	
	Kegiatan pada RPP dapat memfasilitasi				
	siswa untuk berfikir ilmiah			1/	
	3. RPP menyajikan langkah-langkah yang				
	harus diikuti guru dalam proses		1000		,
	pembelajaran				V
30	4. Langkah pembelajaran dalam RPP sudah				
	ielas				V
	5. Kegiatan pembelajaran dalam RPP dapat				
	memfasilitasi siswa untuk membangun			/	-
	pengetahuan kimia				
	6. Kegiatan pembelajaran dalam RPP dapat				
	membantu siswa mengkontruksi			1	
	pengetahuannya sendiri				
	7. Kegiatan pembelajaran dapat memotivasi			1./	
	siswa untuk bertanya dan berdiskusi			-	
	Bahasa dan Keterbacaan				
	Bahasa yang digunakan dalam RPP sesuai			1	
	dengan Kaidah Bahasa Indonesia (EYD)		1000	V	
112				V	
	Bahasa dalam RPP mudah dipahami Bahasa yang digunakan dalam RPP tidak	TE TO		1	
	5. Danasa yang digunakan dalam Ki i tidak			1	
	menimbulkan makna ganda				1
	4. Ukuran huruf pada RPP jelas dan dapat				0
	dibaca			-	

SARAN:				
************		************		
**************		*************		
KEPUTUSAN	٧:			
Petunjuk:				
retunjuk.				
	k/Ibu berikan ta ebagai berikut:	nda (√) pada	kolom A	A, B atau C. huruf A, B dan C
Pendekata		Materi Laru		Discovery Learning dengan trolit dan non-Elekktrolit yang
Pendekata		da Materi I	Larutan I	Discovery Learning dengan Elektrolit dan non-Elekktrolit
Pendekat		da Materi I		Discovery Learning dengan Elektrolit dan non-Elekktrolit
A	В	С		
U				
			Pa	adang,2016
				Validator /
				1/1/1/

Lampiran 28. Hasil Validasi RPP

Distribusi Nilai Validasi RPP

								As	pek	yaı	ng D	inil	ai							
No	Validator	Komponen RPP						Kegiatan Pembelajaran						Bahasa dan Keterbacaan				Jumlah Nilai	Nilai Max	
		1	2	3	4	5	6	1	2	3	4	5	6	7	1	2	3	4		
1	Prof. Dr. Ellizar, M.Pd	3	3	3	4	4	3	4	3	4	3	3	4	3	3	3	3	4	57	68
2	Dr. Hardeli, M.Si	3	3	3	4	3	3	3	3	4	4	3	3	3	3	3	3	4	55	68
Jun	ılah Nilai	6	6	6	8	7	6	7	6	8	7	6	7	6	6	6	6	8		
Jun	ılah Nilai Tiap Aspek	39				47					26									
Nila	i Max Tiap Aspek	48			56					32										

Analisis Nilai Validari RPP Keseluruhan

No	Validator	Nilai	P	Pe	P-Pe	1-Pe	K	Tingkat Validitas
1	Prof. Dr. Ellizar, M.Pd	57	0,84	0,16	0,68	0,84	0,81	Sangat Tinggi
2	Dr. Hardeli, M.Si	55	0,81	0,19	0,62	0,81	0,76	Tinggi
Vali	ditas Total		0,79	Tinggi				

Analisis Validasi RPP Masing-Masing Aspek

No	Aspek yang Dinilai	Nilai	P	Pe	P-Pe	1-Pe	K	Tingkat Validitas
1	Komponen RPP	39	0,81	0,19	0,63	0,81	0,77	Tinggi
2	Kegiatan Pembelajaran	47	0,84	0,16	0,68	0,84	0,81	Sangat Tinggi
3	Bahasa dan Keterbacaan	26	0,81	0,19	0,63	0,81	0,77	Tinggi
Val	iditas Total		0,78	Tinggi				

217

Lampiran 29. Lembar Observasi Aktivitas Belajar Siswa (di Kelas)

LEMBAR OBSERVASI AKTIVITAS BELAJAR SISWA MENGGUNAKAN MODUL KIMIA BERBASIS *DISCOVERY LEARNING* DENGAN

PENDEKATAN SCIENTIFIC

Satuan Pendidikan : SMA

Mata Pelajaran : Kimia

Kelas/Semester : X/II

Hari/Tanggal :

Lembar observasi ini dimaksud untuk mengumpulkan informasi tentang aktivitas

belajar siswa selama proses pembelajaran dengan menggunakan modul kimia

berbasis discovery learning dengan pendekatan scientific pada materi larutan

elektrolit dan non-elektrolit untuk keperluan penelitian dengan judul:

Pengembangan Modul Kimia Berbasis Discovery Learning dengan Pendekatan

Scientific pada Materi Larutan Elektrolit dan non-Elektrolit Kelas X SMA.

Petunjuk Pengisian

Mohon Bapak/Ibu mengamati aktivitas belajar siswa selama proses pembelajaran

dengan menggunakan modul kimia berbasis discovery learning dengan

pendekatan scientific pada materi larutan elektrolit dan non-elektrolit, dan mengisi

lembar observasi dengan tanda checklist (✓) pada kolom yang sesuai dengan

kategori aktivitas yang dilakukan siswa.

Kategori Aktivitas Siswa

1. Mengamati dan menganalisis gambar pada kegiatan stimulasi

2. Mengumpulkan data

3. Mengolah data

4. Mengerjakan latihan soal

5. Menarik kesimpulan di akhir pembelajaran

Lampiran 30. Hasil Analisis Aktivitas Siswa (di Kelas)

Data Aktivitas Siswa di Kelas

							Aspek	yang D	iamati						
No		Pe	rtemua	n 1			Pe	rtemua	n 2			Pe	rtemua	n 3	
	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
4	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1
5	1	1	1	1	1	1	1	0	1	1	1	1	0	0	0
6	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
7	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1
8	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1
9	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
10	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
11	1	1	1	1	1	1	1	0	1	1	1	1	1	0	0
12	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
13	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1
14	1	1	1	1	1	1	1	1	0	1	0	1	1	0	0
15	1	1	1	1	1	0	1	1	1	1	0	1	0	0	0
16	1	1	1	1	1	0	1	1	0	0	0	1	0	0	0
17	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1
18	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1
19	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
20	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
21	1	1	1	1	1	1	1	0	0	1	0	1	1	0	1
22	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
23	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
24	1	1	1	1	1	1	1	1	1	1	0	1	1	0	1
25	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1
26	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1
27	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
28	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1
29	1	1	1	1	1	1	1	1	1	1	0	1	1	0	1
30	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
32	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
33	1	1	1	1	1 1	1	1	1	1	1	1	1	1	0	1
33	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
35	0	0	0	0	0	1	1	1	1	1	0	1	0	0	0
Jumlah	34	34	34	34	34	32	34	31	31	32	27	34	30	16	28
%A	97%	97%	97%	97%	97%	91%	97%	89%	89%	91%	77%	97%	86%	46%	80%
%A tiap	2.70	<i>7.</i> /0	<i>7.</i> /0	2,70	<i>717</i> 0	71/0	<i>717</i> 0	0270	02 /0	71/0	7.70	<i>71.</i> / U	0070	1070	0070
Pertemuan		97% 91% 77%													
%A Keseluruhan								89%							

Lampiran 31. Kisi-Kisi Soal Uji Coba

Kisi-kisi Soal Uji Coba

Bidang Studi / Materi Pokok : Kimia / Larutan Elektrolit dan non-Elektrolit Kompetensi Dasar (KD) :

- 3.8 Menganalisis sifat larutan elektrolit dan larutan nonelektrolit berdasarkan daya hantar listriknya.
- 4.8 Merancang, melakukan, dan menyimpulkan serta menyajikan hasil percobaan untuk mengetahui sifat larutan elektrolit dan larutan non-elektrolit.

Indikator]	Ranah	Kogniti	if	No. Soal
Indikatoi	C1	C2	С3	C4	No. Soai
Membedakan larutan elektrolit dan	✓				1
non-elektrolit		✓			2
	✓				3
	✓				4
				✓	5
Mengelompokkan larutan kedalam				✓	6
larutan elektrolit dan non elektrolit		✓			7
berdasarkan sifat hantaran listriknya		✓			8
		✓			9
			✓		10
		✓			22
				✓	26
		✓			27
Mengidentifikasi penyebab	✓				11
kemampuan larutan elektrolit		✓			12

menghantarkan arus listrik			✓		13
			✓		14
		✓			15
			✓		23
		✓			24
	✓				28
		✓			30
Mendeskripsikan bahwa larutan			✓		16
elektrolit dapat berupa senyawa ion				✓	17
dan senyawa kovalen polar		✓			18
			✓		19
		✓			20
				✓	21
				✓	25
		✓			29

Lampiran 32. Soal Uji Coba

Soal Uji Kompetensi

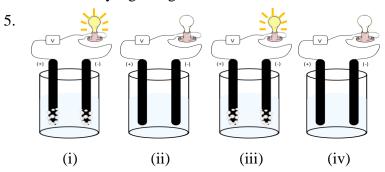
Larutan Elektrolit dan non-Elektrolit

- 1. Campuran dua jenis zat yang bersifat homogen disebut....
 - a. Suspensi

d. Senyawa

b. Koloid

e. Molekul


- c. Larutan
- 2. Campuran berikut ini merupakan contoh larutan, kecuali....
 - a. Sirup di dalam air
- d. Bubuk kopi di dalam air
- b. Gula di dalam air
- e. Cuka di dalam air
- c. Garam di dalam air
- 3. Di dalam larutan, zat yang jumlahnya jauh lebih banyak disebut....
 - a. Pelarut

d. Anion

b. Zat terlarut

e. Senyawa

- c. Kation
- 4. Larutan elektrolit adalah....
 - a. Larutan yang menghantarkan listrik
 - b. Larutan yang membirukan kertas lakmus merah
 - c. Larutan yang memerahkan kertas lakmus biru
 - d. Larutan yang menghantarkan kalor
 - e. Larutan yang mengalir

Berdasarkan gambar di atas, yang merupakan larutan elektrolit ditunjukkan oleh nomor....

	/ • \	1	/ * * \
a.	(1)	dan	(11)
a.	\ I <i>I</i>	uan	\ 11 /

c. (ii) dan (iii)

e. (iv) saja

b. (i) dan (iii)

d. (ii) dan (iv)

- 6. Larutan X diuji dengan menggunakan alat elektrolit tester. Setelah diamati ternyata terdapat gelembung-gelembung gas pada elektroda, dan bola lampu menyala. Berdasarkan data tersebut, sifat larutan X adalah....
 - a. Asam kuat

d. Konduktor

b. Elektrolit

e. Basa Kuat

- c. Non-elektrolit
- 7. Di antara senyawa ion berikut, yang *tidak* dapat menghantarkan arus listrik di dalam air adalah

a. $CO(NH_2)_2$

d. $Sr(NO_3)_2$

b. MgCl₂

e. CaCl₂

- c. KCl
- 8. Perhatikanlah data berikut ini!

Larutan	Nyala lampu	Gelembung gas
P	Redup	Ada
Q	Tidak menyala	Tidak ada
R	Terang	Ada
S	Tidak menyala	Ada
T	Redup	Ada

Berdasarkan data di atas, yang merupakan larutan elektrolit lemah adalah....

- a. P dan T
- c. P dan S
- e. R dan T

- b. Q dan S
- d. P, S dan T
- 9. Perhatikan hasil percobaan terhadap larutan berikut ini!

Larutan yang diuji	Nyala bola lampu	Gelembung gas pada elektroda
A	Menyala terang	Banyak gelembung gas
В	Tidak menyala	Tidak ada gelembung gas
С	Menyala redup	Sedikit gelembung gas
D	Menyala terang	Banyak gelembung gas
Е	Menyala terang	Banyak gelembung gas

	Be	rdasarkan data tersebu	ıt, y	ang tergolong	ς ε	elektrolit kuat dan non-elektrolit
	ada	alah				
	a.	A dan B	c.	A dan C		e. A dan E
	b.	B dan D	d.	C dan E		
10.	Di	antara zat berikut, ket	ika	di dalam air d	la	pat membentuk larutan elektrolit
	len	nah adalah				
	a.	HCl		d		NH_3
	b.	H_2SO_4		e		NaOH
	c.	HNO ₃				
11.	Te	rurainya suatu senyaw	a m	nenjadi ion-io	n	disebut
	a.	Ionisasi		d		Pengion
	b.	Hidrasi		e		Filtrasi
	c.	Polarisasi				
12.	Be	rikut ini merupakan re	aks	i ionisasi yan	g	tepat, kecuali
	a.	$NaCl \rightarrow Na^+ + C$	Cl-			
	b.	$H_2SO_4 \rightarrow 2 H^+ +$	SC	O_4^{2-}		
	c.	$CH_3COOH \rightarrow CH_3$	CO	$O^- + H^+$		
	d.	NH ₄ OH ≒ NH ₄ ⁺	+	OH ⁻		
	e.	$HC1 \rightarrow H^+ + C$	C1 ⁻			
13.	La	rutan elektrolit dapat r	nen	ghantarkan li	st	rik karena
	a.	Adanya molekul-mol	leku	ıl yang berger	al	k bebas
	b.	Adanya ion-ion				
	c.	Adanya ion-ion yang	bei	rgerak bebas		
	d.	Adanya kutub negati	f da	n kutub positi	if	
	e.	Adanya zat terlarut d	an p	pelarut		
14.	Se	nyawa berikut yang da	ılan	n larutannya d	la	pat menghasilkan ion paling
	baı	ıyak adalah				
	a.	H ₂ SO ₄ 0,2 M		d		NH ₄ OH 0,2 M
	b.	C_2H_5OH 0,2 M		e		HCl 1 M

c. HCl 0,5 M

- 15. Larutan natrium hidroksida mempunyai derajat ionisasi 1, artinya......
 - a. Tidak terionisasi
 - b. Terinosasi sebagian
 - c. Tetap terbentuk molekul NaOH
 - d. Terionisasi sempurna
 - e. Sebagian terbentuk ion Na⁺ dan OH⁻
- 16. HCl murni tidak menghantarkan listrik, karena.....
 - a. HCl merupakan senyawa ion
 - b. HCl merupakan senyawa kovalen non-polar
 - c. HCl murni dapat terurai menjadi ion-ion
 - d. HCl murni tidak dapat terurai menjadi ion-ion
 - e. HCl bukan pengahantar listrik yang baik

17. Perhatikan data berikut!

Senyawa		Bentuk Senyawa					
Schyawa	Padatan	Lelehan	Larutan				
A	non-elektrolit	non-elektrolit	elektrolit				
В	non-elektrolit	elektrolit	Elektrolit				
С	non-elektrolit	non-elektrolit	non-elektrolit				

Berdasarkan data tersebut, jenis senyawa A, B, dan C berturut-turut adalah....

- a. Ion, kovalen polar dan kovalen non-polar
- b. Kovalen polar, ion, dan kovalen non-polar
- c. Kovalen non-polar, ion dan kovalen polar
- d. Ion, kovalen non-polar, dan kovalen polar
- e. Kovalen polar, kovalen non-polar, dan ion
- 18. Asam klorida merupakanjika dilarutkan ke dalam air bersifat....
 - a. Senyawa ionik; non elektrolit
 - b. Senyawa ionik; elektrolit
 - c. Senyawa kovalen; non elektrolit
 - d. Senyawa kovalen; elektrolit
 - e. Senyawa kovalen non polar; non elektrolit

19. E	Di antara	zat ber	ikut, o	di dalan	ı air	yang	bersifat	elektrolit	lemah	dan	berikata	ın
k	ovalen a	ıdalah										

a. MgCl₂

c. CH₃COOH

e. CCl₄

b. NH₄Cl

d. NaOH

- 20. Suatu senyawa dapat menghantarkan listrik, karena.....
 - a. Memiliki ion-ion yang bergerak bebas
 - b. Memiliki molekul yang bergerak bebas
 - c. Memiliki jumlah pelarut yang tetap
 - d. Memiliki elektron yang bergerak bebas
 - e. Berikatan kovalen polar
- 21. Senyawa berikut yang dalam keadaan cairan murni tidak menghantarkan listrik, tetapi bila dilarutkan ke dalam air akan menghantarkan listrik adalah....

a. H_2SO_4

d. $C_6H_{12}O_6$

b. CCl₄

e. $C_{12}H_{22}O_{11}$

- c. C₂H₅OH
- 22. Seorang siswa ingin menguji beberapa jenis air limbah yang terdapat di sekitar sekolahnya. Hasil yang didapat adalah sebagai berikut.

Air limbah	Peng	amatan pada					
All Illioan	Lampu	Elektrode					
1	Menyala	Ada gelembung gas					
2	Tidak menyala	Ada gelembung gas					
3	Tidak menyala	Tidak ada gelelmbung gas					
4	Menyala	Ada gelembung gas					
5	Tidak menyala	Ada gelembung gas					

Pasangan air limbah yang bersifat elektrolit lemah adalah....

a. 1 dan 2

d. 3 dan 5

b. 1 dan 4

e. 4 dan 5

c. 2 dan 5

23. Diantara senyawa berikut, yang jika dilarutkan dalam air tidak mengalami ionisasi adalah.... a. CH₃COOH d. MgCl₂ e. $C_{12}H_{22}O_{11}$ b. H_2SO_4 c. AlCl₃ 24. Diantara senyawa berikut, yang di dalam larutannya menghasilkan ion yang paling banyak adalah.... a. H₂SO₄ d. CH₃COOH b. AlCl₃ e. NH₄Cl c. Na₂SO₄ 25. NaCl padat tidak dapat menghantarkan listrik sedangkan larutan NaCl dapat menghantarkan listrik. Dari fakta tersebut dapat disimpulkan bahwa.... a. Adanya air mengubah NaCl yang semula berikatan kovalen menjadi ikatan ion b. NaCl padat bila dilarutkan ke dalam air akan terdisosiasi membentuk ionion yang bebas bergerak c. NaCl padat berikatan kovalen tetapi larutan NaCl merupakan senyawa berikatan ion d. Air menimbulkan perubahan pada kekuatan arus listrik e. Arus listrik akan mengalir bila ada air sebagai mediumnya 26. Dua larutan A dan B diuji dengan alat uji elektrolit. Lampu alat uji menyala ketika menguji larutan A sedangkan ketika larutan B diuji lampu tidak menyala, tetapi ada gelembung-gelembung gas pada elektrodanya. Dari pengamatan tersebut dapat disimpulkan bahwa... a. Larutan A elektrolit kuat dan larutan B non-elektrolit b. Larutan A non-elektrolit dan larutan B elektrolit kuat

c. Jumlah ion pada larutan A lebih banyak daripada jumlah ion pada larutan

В

- d. Jumlah ion pada larutan A lebih sedikit daripada jumlah ion pada larutan B
- e. Jumlah ion dalam kedua larutan tidak dapt dibandingkan
- 27. Diketahui data hasil percobaan uji elektrolit beberapa larutan sebagai berikut.

Larutan		Lampu		Gelemb	oung gas
Larutan	Terang	Redup	Padam	Ada	Tidak ada
A			✓		✓
В		✓		✓	
С	✓			✓	

Berdasarkan tabel, urutan bertambahnya kekuatan daya hantar listrik yang tepat adalah....

a. A, B, C

d. C, B, A

b. A, C, B

e. B, A, C

c. C, A, B

28. Kekuatan daya hantar listrik suatu larutan bergantung pada....

a. Jenis pelarut

d. Bentuk ikatan

b. Jenis ikatan zat terlarut

e. Jenis ikatan

- c. Jumlah ion
- 29. Perhatikan data hasil percobaan berikut ini.

No.	Sifat fisis	Zat A	Zat B
1	Wujud zat	Padat	Padat
2	Kelarutan dalam air	Larut	Tidak larut
3	Daya hantar listrik larutan	Konduktor	Isolator
4	Titik leleh dan titik didih	Tinggi	Rendah

Berdasarkan data tersebut, maka dapat disimpulkan bahwa jenis ikatan yang terdapat pada zat A dan zat B berturut-turut adalah....

- a. Ionik dan kovalen non-polar
- b. Kovalen polar dan ionik

- c. Kovalen non-polar dan ionik
- d. Kovalen koordinasi dan logam
- e. Hidrogen dan kovalen
- 30. Larutan H₂SO₄ di dalam air terionisasi dengan reaksi...

$$a. \quad H_2SO_{4(aq)} \to 2H^+{}_{(aq)} + SO_4^{2^-}{}_{(aq)}$$

b.
$$H_2SO_{4(aq)} \rightarrow 2H^+_{(aq)} + 4SO^{2-}_{(aq)}$$

c.
$$H_2SO_{4(aq)} \rightarrow H^{2+}_{(aq)} + SO_4^{2-}_{(aq)}$$

d.
$$H_2SO_{4(aq)} \rightarrow H^{2+}_{(aq)} + 4SO_4^{2-}_{(aq)}$$

e.
$$H_2SO_{4(aq)} \rightarrow H_2^{+}_{(aq)} + SO_4^{2-}_{(aq)}$$

Lampiran 33. Distribusi Soal Uji Coba

Distribusi Jawaban Siswa pada Soal Uji Coba

Testee				1		1	ı				1					em So		1	1			1		ı			1							(Xt-
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	Xt	Xt ²	Xt-xt	xt)2
1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	0	1	1	1	1	1	0	1	1	1	1	1	1	27	729	8,44	71,19
2	1	0	1	1	1	1	1	1	1	0	1	0	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	26	676	7,44	55,32
3	1	0	1	1	1	1	0	1	1	1	1	0	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	25	625	6,44	41,44
4	1	1	1	1	1	1	0	1	1	1	1	1	1	0	0	1	1	1	1	1	0	1	1	0	0	1	1	1	1	1	24	576	5,44	29,57
5	1	1	1	1	1	1	0	1	1	0	1	1	1	1	1	1	1	1	0	1	1	1	1	1	0	1	1	0	1	0	24	576	5,44	29,57
6	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	0	1	1	0	0	0	0	1	1	1	1	24	576	5,44	29,57
7	1	0	1	1	1	1	1	1	1	0	1	0	1	0	1	1	1	1	1	1	0	1	1	1	0	0	1	1	1	1	23	529	4,44	19,69
8	1	0	1	1	1	1	1	1	1	1	0	1	1	0	1	1	1	0	1	1	1	1	1	0	1	0	0	1	1	1	23	529	4,44	19,69
9	1	1	0	1	1	1	1	0	1	1	1	1	1	0	0	1	0	1	0	1	1	0	1	1	1	0	1	1	1	1	22	484	3,44	11,82
10	1	1	1	1	0	1	1	1	1	1	1	1	1	1	0	0	1	1	0	1	1	1	1	1	0	0	0	1	1	0	22	484	3,44	11,82
11	1	0	1	1	1	1	1	1	1	1	1	0	1	0	1	1	0	1	1	1	1	1	0	0	0	0	1	1	1	1	22	484	3,44	11,82
12	1	1	0	1	1	1	0	0	1	0	1	1	0	0	1	1	1	0	1	1	1	1	1	1	0	1	1	1	1	0	21	441	2,44	5,94
13	1	1	1	1	1	0	1	0	1	1	0	1	1	1	1	0	1	0	0	1	1	1	1	0	0	0	1	1	1	0	20	400	1,44	2,07
14	1	1	1	1	1	1	1	1	1	0	1	0	1	0	1	1	0	1	1	1	0	1	0	0	0	0	0	1	1	1	20	400	1,44	2,07
15	1	0	1	1	1	1	1	1	1	0	1	0	1	0	0	1	1	1	1	1	0	1	0	0	0	0	1	1	1	1	20	400	1,44	2,07
16	0	1	0	1	1	1	1	1	1	0	1	1	0	1	0	1	1	0	1	0	1	1	1	0	0	0	1	1	0	1	19	361	0,44	0,19
Ba	15	10	13	16	15	15	12	13	16	9	14	9	14	5	11	14	13	11	12	14	12	15	12	7	5	6	13	14	15	12				
17	1	1	0	1	1	1	0	1	0	0	0	1	1	0	0	1	0	1	0	1	0	1	1	1	1	0	1	1	1	1	19	361	0,44	0,19
18	1	0	1	1	0	1	1	0	0	1	1	1	1	1	0	0	0	0	1	1	1	0	1	1	0	1	1	0	1	1	19	361	0,44	0,19
19	1	0	1	1	1	1	1	0	1	1	1	0	1	0	0	1	1	0	0	1	1	1	0	0	0	0	1	1	1	0	18	324	-0,56	0,32
20	1	0	1	1	0	1	0	1	1	0	1	0	1	0	1	1	1	0	0	0	0	0	1	0	0	1	1	1	1	1	17	289	-1,56	2,44
21	1	1	0	1	0	1	0	1	1	0	1	0	1	0	0	0	1	1	1	1	1	0	0	0	1	0	1	1	0	0	16	256	-2,56	6,57
22	0	1	1	1	1	1	1	1	1	0	0	1	0	0	0	0	0	0	0	1	0	1	1	0	0	0	1	1	0	1	15	225	-3,56	12,69
23	1	1	0	1	1	0	0	1	1	0	0	1	0	0	1	0	1	0	0	1	1	0	0	0	0	1	0	1	1	1	15	225	-3,56	12,69
24	0	0	0	1	0	0	0	0	1	1	1	1	1	1	0	1	1	1	0	1	0	0	0	0	1	0	1	1	1	0	15	225	-3,56	12,69

25	1	0	0	1	1	0	0	1	1	1	1	1	1	0	0	0	0	0	1	1	0	1	0	1	0	0	0	1	1	0	15	225	-3,56	12,69
26	1	0	1	1	1	1	1	0	0	1	0	1	0	0	1	0	1	0	1	0	0	1	0	1	0	0	0	0	1	0	14	196	-4,56	20,82
27	1	0	1	1	1	0	1	1	1	0	1	0	1	0	0	1	0	1	1	0	0	0	0	0	0	0	0	1	1	0	14	196	-4,56	20,82
28	0	1	1	0	0	1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	0	0	1	0	0	0	0	1	1	0	13	169	-5,56	30,94
29	1	0	1	0	0	0	1	0	1	0	0	1	1	1	1	0	1	0	0	1	1	0	0	0	0	0	0	0	0	1	12	144	-6,56	43,07
30	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	1	1	0	0	1	0	0	0	0	0	1	1	1	12	144	-6,56	43,07
31	1	0	0	0	0	1	0	0	1	0	0	0	1	0	0	0	1	1	0	0	0	0	0	0	1	0	1	1	0	1	10	100	-8,56	73,32
32	0	0	0	0	0	1	0	1	1	0	0	0	0	0	1	0	0	0	0	1	1	0	1	0	0	0	1	0	0	0	8	64	-10,56	111,57
Bb	12	6	9	12	8	10	8	8	12	5	8	8	11	3	6	5	9	6	7	10	6	6	6	4	4	3	9	12	11	8				
Jumlah	27	16	22	28	23	25	20	21	28	14	22	17	25	8	17	19	22	17	19	24	18	21	18	11	9	9	22	26	26	20	594	11774		747,88
																										I	Rata-ra	ata (xt	t)		18,56			
																										,		•	•	S ²		•		23,37
																														S				4,83

Lampiran 34. Analisis Validitas Butir Soal Uji Coba

Analisis Validitas Butir Soal Uji Coba

Item	Benar	Salah	St	Mp	Mt	р	q	p/q	√p/q	Mp-Mt	(Mp-Mt)/St	Rpbi	Kategori
1	27	5	4,83	19,41	18,56	0,84	0,16	5,40	2,32	0,84	0,17	0,41	Sedang
2	16	16	4,83	18,63	18,56	0,50	0,50	1,00	1,00	0,06	0,01	0,01	Sangat Rendah
3	22	10	4,83	19,73	18,56	0,69	0,31	2,20	1,48	1,16	0,24	0,36	Rendah
4	28	4	4,83	19,68	18,56	0,88	0,13	7,00	2,65	1,12	0,23	0,61	Tinggi
5	23	9	4,83	20,09	18,56	0,72	0,28	2,56	1,60	1,52	0,32	0,50	Sedang
6	25	7	4,83	19,64	18,56	0,78	0,22	3,57	1,89	1,08	0,22	0,42	Sedang
7	20	12	4,83	19,25	18,56	0,63	0,38	1,67	1,29	0,69	0,14	0,18	Sangat Rendah
8	21	11	4,83	19,90	18,56	0,66	0,34	1,91	1,38	1,34	0,28	0,38	Rendah
9	28	4	4,83	18,93	18,56	0,88	0,13	7,00	2,65	0,37	0,08	0,20	Rendah
10	14	18	4,83	20,71	18,56	0,44	0,56	0,78	0,88	2,15	0,45	0,39	Rendah
11	22	10	4,83	20,27	18,56	0,69	0,31	2,20	1,48	1,71	0,35	0,52	Sedang
12	17	15	4,83	19,00	18,56	0,53	0,47	1,13	1,06	0,44	0,09	0,10	Sangat Rendah
13	25	7	4,83	18,72	18,56	0,78	0,22	3,57	1,89	0,16	0,03	0,06	Sangat Rendah
14	8	24	4,83	19,75	18,56	0,25	0,75	0,33	0,58	1,19	0,25	0,14	Sangat Rendah
15	17	15	4,83	19,65	18,56	0,53	0,47	1,13	1,06	1,08	0,22	0,24	Rendah
16	19	13	4,83	21,21	18,56	0,59	0,41	1,46	1,21	2,65	0,55	0,66	Tinggi
17	22	10	4,83	19,45	18,56	0,69	0,31	2,20	1,48	0,89	0,18	0,27	Rendah
18	17	15	4,83	19,88	18,56	0,53	0,47	1,13	1,06	1,32	0,27	0,29	Rendah
19	19	13	4,83	19,84	18,56	0,59	0,41	1,46	1,21	1,28	0,26	0,32	Rendah
20	24	8	4,83	18,63	18,56	0,75	0,25	3,00	1,73	0,06	0,01	0,02	Sangat Rendah
21	18	14	4,83	20,17	18,56	0,56	0,44	1,29	1,13	1,60	0,33	0,38	Rendah
22	21	11	4,83	20,62	18,56	0,66	0,34	1,91	1,38	2,06	0,43	0,59	Sedang
23	18	14	4,83	20,39	18,56	0,56	0,44	1,29	1,13	1,83	0,38	0,43	Sedang
24	11	21	4,83	20,91	18,56	0,34	0,66	0,52	0,72	2,35	0,49	0,35	Rendah
25	9	23	4,83	20,33	18,56	0,28	0,72	0,39	0,63	1,77	0,37	0,23	Rendah
26	9	23	4,83	22,00	18,56	0,28	0,72	0,39	0,63	3,44	0,71	0,44	Sedang
27	22	10	4,83	19,73	18,56	0,69	0,31	2,20	1,48	1,16	0,24	0,36	Rendah
28	26	6	4,83	18,92	18,56	0,81	0,19	4,33	2,08	0,36	0,07	0,16	Sangat Rendah
29	26	6	4,83	19,77	18,56	0,81	0,19	4,33	2,08	1,21	0,25	0,52	Sedang
30	20	12	4,83	19,70	18,56	0,63	0,38	1,67	1,29	1,14	0,24	0,30	Rendah

Lampiran 35. Analisis Indeks Kesukaran dan Daya Beda Soal Uji Coba Analisis Indeks Kesukaran dan Daya Beda Soal Uji Coba

Item	Ba	Bb	Ba + Bb	Ja	Jb	Ba/Ja	Bb/Jb	P	Kriteria	D	Kriteria
1	15	12	27	16	16	0,94	0,75	0,84	Mudah	0,19	Jelek
2	10	6	16	16	16	0,63	0,38	0,50	Sedang	0,25	Cukup
3	13	9	22	16	16	0,81	0,56	0,69	Sedang	0,25	Cukup
4	16	12	28	16	16	1,00	0,75	0,88	Mudah	0,25	Cukup
5	15	8	23	16	16	0,94	0,50	0,72	Mudah	0,44	Baik
6	15	10	25	16	16	0,94	0,63	0,78	Mudah	0,31	Cukup
7	12	8	20	16	16	0,75	0,50	0,63	Sedang	0,25	Cukup
8	13	8	21	16	16	0,81	0,50	0,66	Sedang	0,31	Cukup
9	16	12	28	16	16	1,00	0,75	0,88	Mudah	0,25	Cukup
10	9	5	14	16	16	0,56	0,31	0,44	Sedang	0,25	Cukup
11	14	8	22	16	16	0,88	0,50	0,69	Sedang	0,38	Cukup
12	9	8	17	16	16	0,56	0,50	0,53	Sedang	0,06	Jelek
13	14	11	25	16	16	0,88	0,69	0,78	Mudah	0,19	Jelek
14	5	3	8	16	16	0,31	0,19	0,25	Sukar	0,13	Jelek
15	11	6	17	16	16	0,69	0,38	0,53	Sedang	0,31	Cukup
16	14	5	19	16	16	0,88	0,31	0,59	Sedang	0,56	Baik
17	13	9	22	16	16	0,81	0,56	0,69	Sedang	0,25	Cukup
18	11	6	17	16	16	0,69	0,38	0,53	Sedang	0,31	Cukup
19	12	7	19	16	16	0,75	0,44	0,59	Sedang	0,31	Cukup
20	14	10	24	16	16	0,88	0,63	0,75	Mudah	0,25	Cukup
21	12	6	18	16	16	0,75	0,38	0,56	Sedang	0,38	Cukup
22	15	6	21	16	16	0,94	0,38	0,66	Sedang	0,56	Baik
23	12	6	18	16	16	0,75	0,38	0,56	Sedang	0,38	Cukup
24	7	4	11	16	16	0,44	0,25	0,34	Sedang	0,19	Jelek
25	5	4	9	16	16	0,31	0,25	0,28	Sukar	0,06	Jelek
26	6	3	9	16	16	0,38	0,19	0,28	Sukar	0,19	Jelek
27	13	9	22	16	16	0,81	0,56	0,69	Sedang	0,25	Cukup
28	14	12	26	16	16	0,88	0,75	0,81	Mudah	0,13	Jelek
29	15	11	26	16	16	0,94	0,69	0,81	Mudah	0,25	Cukup
30	12	8	20	16	16	0,75	0,50	0,63	Sedang	0,25	Cukup

Lampiran 36. Analisis Reliabilitas Soal Uji Coba

Analisis Reliabilitas Soal Uji Coba

$$S_t^2 = \frac{\sum Xt^2 - \frac{\left(\sum Xt\right)^2}{N}}{N} = \frac{11774 - \frac{(594)^2}{32}}{32}$$
$$= \frac{11774 - 11026, 1}{32} = 23,37$$

$$r_{11} = \left(\frac{k}{k-1}\right) \left(1 - \frac{M_t(k-M_t)}{(k)(S_t^2)}\right)$$

$$r_{11} = \left(\frac{30}{30 - 1}\right) \left(1 - \frac{19,56(30 - 1956)}{(30)(23,37)}\right)$$

$$r_{11} = (1.0345) \left(1 - \frac{204,21}{701.13}\right)$$

$$r_{11} = (1.0345) (1 - 0.29125)$$

$$r_{11} = (1.0345)(0,70875)$$

$$r_{11} = 0.73$$
 Reliabilitas Tinggi

Lampiran 37. Hasil Analisis Soal Uji Coba

Item	Rpbi	Kategori Validitas	P	Tingkat Kesukaran	D	Kategori Daya Beda	Keterangan
1	0,41	Sedang	0,84	Mudah	0,19	Jelek	Pakai
2	0,01	Sangat Rendah	0,50	Sedang	0,25	Cukup	Pakai
3	0,36	Rendah	0,69	Sedang	0,25	Cukup	Pakai
4	0,61	Tinggi	0,88	Mudah	0,25	Cukup	Pakai
5	0,50	Sedang	0,72	Mudah	0,44	Baik	Pakai
6	0,42	Sedang	0,78	Mudah	0,31	Cukup	Pakai
7	0,18	Sangat Rendah	0,63	Sedang	0,25	Cukup	Pakai
8	0,38	Rendah	0,66	Sedang	0,31	Cukup	Pakai
9	0,20	Rendah	0,88	Mudah	0,25	Cukup	Buang
10	0,39	Rendah	0,44	Sedang	0,25	Cukup	Pakai
11	0,52	Sedang	0,69	Sedang	0,38	Cukup	Pakai
12	0,10	Sangat Rendah	0,53	Sedang	0,06	Jelek	Buang
13	0,06	Sangat Rendah	0,78	Mudah	0,19	Jelek	Buang
14	0,14	Sangat Rendah	0,25	Sukar	0,13	Jelek	Pakai
15	0,24	Rendah	0,53	Sedang	0,31	Cukup	Pakai
16	0,66	Tinggi	0,59	Sedang	0,56	Baik	Pakai
17	0,27	Rendah	0,69	Sedang	0,25	Cukup	Pakai
18	0,29	Rendah	0,53	Sedang	0,31	Cukup	Pakai
19	0,32	Rendah	0,59	Sedang	0,31	Cukup	Pakai
20	0,02	Sangat Rendah	0,75	Mudah	0,25	Cukup	Pakai
21	0,38	Rendah	0,56	Sedang	0,38	Cukup	Pakai
22	0,59	Sedang	0,66	Sedang	0,56	Baik	Pakai
23	0,43	Sedang	0,56	Sedang	0,38	Cukup	Pakai
24	0,35	Rendah	0,34	Sedang	0,19	Jelek	Buang
25	0,23	Rendah	0,28	Sukar	0,06	Jelek	Pakai
26	0,44	Sedang	0,28	Sukar	0,19	Jelek	Pakai
27	0,36	Rendah	0,69	Sedang	0,25	Cukup	Pakai
28	0,16	Sangat Rendah	0,81	Mudah	0,13	Jelek	Buang
29	0,52	Sedang	0,81	Mudah	0,25	Cukup	Pakai
30	0,30	Rendah	0,63	Sedang	0,25	Cukup	Pakai

Ringkasan Tingkat Kesukaran Soal Tes Akhir

Kriteria Soal	Sukar	Sedang	Mudah
Jumlah Item	3	16	6
Persentase	12%	64%	24%

Lampiran 38. Kisi-Kisi Soal Tes Akhir

Kisi-kisi Soal Tes Akhir

Bidang Studi / Materi Pokok : Kimia / Larutan Elektrolit dan non-Elektrolit Kompetensi Dasar (KD) :

- 3.8 Menganalisis sifat larutan elektrolit dan larutan nonelektrolit berdasarkan daya hantar listriknya.
- 4.8 Merancang, melakukan, dan menyimpulkan serta menyajikan hasil percobaan untuk mengetahui sifat larutan elektrolit dan larutan non-elektrolit.

Indikator]	Ranah	Kogniti	if	No. Soal
Indikatoi	C1	C2	С3	C4	No. Soai
Membedakan larutan elektrolit dan	✓				1
non-elektrolit		✓			2
	✓				3
	✓				4
				✓	5
Mengelompokkan larutan kedalam				✓	6
larutan elektrolit dan non elektrolit		✓			7
berdasarkan sifat hantaran listriknya		✓			8
			✓		9
		✓			19
				✓	22
		✓			23
Mengidentifikasi penyebab	✓				10
kemampuan larutan elektrolit					

menghantarkan arus listrik				
		✓		11
	✓			12
		✓		20
	✓			25
Mendeskripsikan bahwa larutan		✓		13
elektrolit dapat berupa senyawa ion			✓	14
dan senyawa kovalen polar	✓			15
		✓		16
	✓			17
			✓	18
			✓	21
	√			24

Lampiran 39. Soal Tes Akhir

Soal Tes Akhir Larutan Elektrolit dan non-Elektrolit

Waktu: 45 menit (1 jam pelajaran)

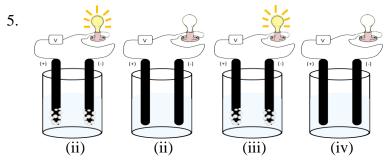
Nama : Kelas :

1. Campuran dua jenis zat yang bersifat homogen disebut....

a. Suspensi

c. Larutan

e. Molekul


b. Koloid

d. Senyawa

- 2. Campuran berikut ini merupakan contoh larutan, kecuali....
 - a. Sirup di dalam air
- d. Bubuk kopi di dalam air
- b. Gula di dalam air
- e. Cuka di dalam air
- c. Garam di dalam air
- 3. Di dalam larutan, zat yang jumlahnya jauh lebih banyak disebut....
 - a. Pelarut

- d. Anion
- b. Zat terlarut
- e. Senyawa

- c. Kation
- 4. Larutan elektrolit adalah....
 - a. Larutan yang menghantarkan listrik
 - b. Larutan yang membirukan kertas lakmus merah
 - c. Larutan yang memerahkan kertas lakmus biru
 - d. Larutan yang menghantarkan kalor
 - e. Larutan yang mengalir

Berdasarkan gambar di atas, yang merupakan larutan elektrolit ditunjukkan oleh nomor....

- a. (i) dan (ii)
- c. (ii) dan (iii)
- e. (iv) saja

- b. (i) dan (iii)
- d. (ii) dan (iv)

6.	Larutan X diuji denga ternyata terdapat geler menyala. Berdasarkan	mbung-gelembung	gas pada elektrod	la, dan bola lampu
	a. Asam kuat		d. Konduktor	
	b. Elektrolit		e. Basa Kuat	
	c. Non-elektrolit			
7.	Di antara senyawa ion dalam air adalah	berikut, yang tida	k dapat menghant	arkan arus listrik di
	a. $CO(NH_2)_2$	c. KCl	e.	$Sr(NO_3)_2$
	b. MgCl ₂	d. CaCl ₂		
8.	Perhatikanlah data ber	rikut ini!		

Larutan	Nyala lampu	Gelembung gas			
P	Redup	Ada			
Q	Tidak menyala	Tidak ada			
R	Terang	Ada			
S	Tidak menyala	Ada			
T	Redup	Ada			

Berdasarkan data di atas, yang merupakan larutan elektrolit lemah adalah....

- a. P dan T
- c. P dan S

e. R dan T

- b. Q dan S
- d. P, S dan T
- 9. Di antara zat berikut, ketika di dalam air dapat membentuk larutan elektrolit lemah adalah
 - a. HCl

d. NH₃

 $b. \ \ H_2SO_4$

e. NaOH

- c. HNO₃
- 10. Terurainya suatu senyawa menjadi ion-ion disebut.....
 - a. Ionisasi

d. Pengion

b. Hidrasi

e. Filtrasi

- c. Polarisasi
- 11. Senyawa berikut yang dalam larutannya dapat menghasilkan ion paling banyak adalah......
 - a. $H_2SO_4 \ 0.2 M$

d. NH₄OH 0,2 M

b. $C_2H_5OH 0,2 M$

e. HCl 1 M

c. HCl 0,5 M

- 12. Larutan natrium hidroksida mempunyai derajat ionisasi 1, artinya......
 - a. Tidak terionisasi
 - b. Terinosasi sebagian
 - c. Tetap terbentuk molekul NaOH
 - d. Terionisasi sempurna
 - e. Sebagian terbentuk ion Na⁺ dan OH⁻
- 13. HCl murni tidak menghantarkan listrik, karena.....
 - a. HCl merupakan senyawa ion
 - b. HCl merupakan senyawa kovalen non-polar
 - c. HCl murni dapat terurai menjadi ion-ion
 - d. HCl murni tidak dapat terurai menjadi ion-ion
 - e. HCl bukan pengahantar listrik yang baik

14. Perhatikan data berikut!

Convoyyo	Bentuk Senyawa								
Senyawa	Padatan	Lelehan	Larutan						
A	non-elektrolit	non-elektrolit	elektrolit						
В	non-elektrolit	elektrolit	Elektrolit						
С	non-elektrolit	non-elektrolit	non-elektrolit						

Berdasarkan data tersebut, jenis senyawa A, B, dan C berturut-turut adalah....

- a. Ion, kovalen polar dan kovalen non-polar
- b. Kovalen polar, ion, dan kovalen non-polar
- c. Kovalen non-polar, ion dan kovalen polar
- d. Ion, kovalen non-polar, dan kovalen polar
- e. Kovalen polar, kovalen non-polar, dan ion
- 15. Asam klorida merupakanjika dilarutkan ke dalam air bersifat....
 - a. Senyawa ionik; non elektrolit
 - b. Senyawa ionik; elektrolit
 - c. Senyawa kovalen; non elektrolit
 - d. Senyawa kovalen; elektrolit
 - e. Senyawa kovalen non polar; non elektrolit
- 16. Di antara zat berikut, di dalam air yang bersifat elektrolit lemah dan berikatan kovalen adalah
 - a. MgCl₂
- c. CH₃COOH
- e. CCl₄

- b. NH₄Cl
- d. NaOH

- 17. Suatu senyawa dapat menghantarkan listrik, karena.....
 - a. Memiliki ion-ion yang bergerak bebas
 - b. Memiliki molekul yang bergerak bebas
 - c. Memiliki jumlah pelarut yang tetap
 - d. Memiliki elektron yang bergerak bebas
 - e. Berikatan kovalen polar
- 18. Senyawa berikut yang dalam keadaan cairan murni tidak menghantarkan listrik, tetapi bila dilarutkan ke dalam air akan menghantarkan listrik adalah....

a. H_2SO_4

d. $C_6H_{12}O_6$

b. CCl₄

e. $C_{12}H_{22}O_{11}$

c. C₂H₅OH

19. Seorang siswa ingin menguji beberapa jenis air limbah yang terdapat di sekitar sekolahnya. Hasil yang didapat adalah sebagai berikut.

, , , , , , , , , , , , , , , , , , , ,									
Air limbah	Pengamatan pada								
	Lampu	Elektrode							
1	Menyala	Ada gelembung gas							
2	Tidak menyala	Ada gelembung gas							
3	Tidak menyala	Tidak ada gelelmbung gas							
4	Menyala	Ada gelembung gas							
5	Tidak menyala	Ada gelembung gas							

Pasangan air limbah yang bersifat elektrolit lemah adalah.....

a. 1 dan 2

d. 3 dan 5

b. 1 dan 4

e. 4 dan 5

- c. 2 dan 5
- 20. Diantara senyawa berikut, yang jika dilarutkan dalam air tidak mengalami ionisasi adalah....

a. CH₃COOH

d. MgCl₂

b. H_2SO_4

e. $C_{12}H_{22}O_{11}$

c. AlCl₃

- 21. NaCl padat tidak dapat menghantarkan listrik sedangkan larutan NaCl dapat menghantarkan listrik. Dari fakta tersebut dapat disimpulkan bahwa....
 - a. Adanya air mengubah NaCl yang semula berikatan kovalen menjadi ikatan ion
 - b. NaCl padat bila dilarutkan ke dalam air akan terdisosiasi membentuk ionion yang bebas bergerak
 - c. NaCl padat berikatan kovalen tetapi larutan NaCl merupakan senyawa berikatan ion
 - d. Air menimbulkan perubahan pada kekuatan arus listrik
 - e. Arus listrik akan mengalir bila ada air sebagai mediumnya
- 22. Dua larutan A dan B diuji dengan alat uji elektrolit. Lampu alat uji menyala ketika menguji larutan A sedangkan ketika larutan B diuji lampu tidak menyala, tetapi ada gelembung-gelembung gas pada elektrodanya. Dari pengamatan tersebut dapat disimpulkan bahwa...
 - a. Larutan A elektrolit kuat dan larutan B non-elektrolit
 - b. Larutan A non-elektrolit dan larutan B elektrolit kuat
 - c. Jumlah ion pada larutan A lebih banyak daripada jumlah ion pada larutan B
 - d. Jumlah ion pada larutan A lebih sedikit daripada jumlah ion pada larutan B
 - e. Jumlah ion dalam kedua larutan tidak dapt dibandingkan
- 23. Diketahui data hasil percobaan uji elektrolit beberapa larutan sebagai berikut.

Larutan		Lampu	Gelembung gas		
	Terang	Redup	Padam	Ada	Tidak ada
A			✓		✓
В		✓		✓	
С	✓			✓	

Berdasarkan tabel, urutan bertambahnya kekuatan daya hantar listrik yang tepat adalah....

a. A, B, C

d. C, B, A

b. A, C, B

e. B, A, C

c. C, A, B

24. Perhatikan data hasil percobaan berikut ini.

No.	Sifat fisis	Zat A	Zat B
1	Wujud zat	Padat	Padat
2	Kelarutan dalam air	Larut	Tidak larut
3	Daya hantar listrik larutan	Konduktor	Isolator
4	Titik leleh dan titik didih	Tinggi	Rendah

Berdasarkan data tersebut, maka dapat disimpulkan bahwa jenis ikatan yang terdapat pada zat A dan zat B berturut-turut adalah....

- a. Ionik dan kovalen non-polar
- b. Kovalen polar dan ionik
- c. Kovalen non-polar dan ionik
- d. Kovalen koordinasi dan logam
- e. Hidrogen dan kovalen
- 25. Larutan H₂SO₄ di dalam air terionisasi dengan reaksi...

 - a. $H_2SO_{4(aq)} \rightarrow 2H^+_{(aq)} + SO_4^{2-}_{(aq)}$ b. $H_2SO_{4(aq)} \rightarrow 2H^+_{(aq)} + 4SO_{(aq)}^{2-}$
 - c. $H_2SO_{4(aq)} \rightarrow H^{2+}_{(aq)} + SO_4^{2-}_{(aq)}$
 - d. $H_2SO_{4(aq)} \rightarrow H^{2+}_{(aq)} + 4SO_4^{2-}_{(aq)}$
 - e. $H_2SO_{4(aq)} \rightarrow H_2^{+}_{(aq)} + SO_4^{2-}_{(aq)}$

Lampiran 40. Hasil Tes Akhir Kelas Eksperimen dan Kelas Kontrol

Hasil Tes Akhir

No	Kelas Eksperimen	Kelas Kontrol			
1	96	96			
2	96	92			
3	96	88			
4	96	88			
5	92	88			
6	92	88			
7	92	88			
8	92	84			
9	92	84			
10	92	84			
11	92	84			
12	92	80			
13	88	80			
14	88	80			
15	88	80			
16	88	80			
17	88	80			
18	88	80			
19	88	76			
20	88	76			
21	88	76			
22	84	72			
23	84	72			
24	84	72			
25	84	72			
26	84	72			
27	80	72			
28	80	68			
29	80	68			
30	80	68			
31	80	68			
32	72	68			
33	72	64			
34	64	64			
35	64	60			
Rata-rata	85,83	77,49			

Lampiran 41. Hasil Uji Normalitas Tes Akhir Kelas Eksperimen

Uji Normalitas Kelas Eksperimen

No	Xi	Fi	Xi ²	FiXi	FiXi ²	fk	Xi-x	(Xi-x) ²	Fi (Xi- x) ²	Zi	F(Zi)	S(zi)	Fzi-Szi
1	64	2	4096	128	8192	2	-21,83	476,49	952,97	-2,70	0,0035	0,0571	0,0536
2	72	2	5184	144	10368	4	-13,83	191,23	382,46	-1,71	0,0436	0,1143	0,0707
3	80	5	6400	400	32000	9	-5,83	33,97	169,86	-0,72	0,2358	0,2571	0,0213
4	84	5	7056	420	35280	14	-1,83	3,34	16,72	-0,23	0,4090	0,4000	0,0090
5	88	9	7744	792	69696	23	2,17	4,72	42,44	0,27	0,6064	0,6571	0,0507
6	92	8	8464	736	67712	31	6,17	38,09	304,69	0,76	0,7764	0,8857	0,1093
7	96	4	9216	384	36864	35	10,17	103,46	413,83	1,26	0,8962	1,0000	0,1038
Jun	ılah	35	48160	3004					2282,97				Lo = 0.1093
	Ra	ta-ra	ıta	85,83									
	S^2							S^2	65,23			Lt	0,1498
S							8,08			Lo	0,1093		
										-		Lo < Lt	Normal

Lampiran 42. Hasil Uji Normalitas Tes Akhir Kelas Kontrol

No	Xi	Fi	Xi ²	FiXi	FiXi ²	fk	Xi-x	(Xi-x) ²	Fi (Xi-x) ²	Zi	F(Zi)	S(zi)	Fzi-Szi
1	60	1	3600	60	3600	1	-17,49	305,75	305,75	-2,02	0,0217	0,0286	0,0069
2	64	2	4096	128	8192	3	-13,49	181,86	363,73	-1,56	0,0594	0,0857	0,0263
3	68	5	4624	340	23120	8	-9,49	89,98	449,89	-1,09	0,1379	0,2286	0,0907
4	72	6	5184	432	31104	14	-5,49	30,09	180,56	-0,63	0,2643	0,4000	0,1357
5	76	3	5776	228	17328	17	-1,49	2,21	6,62	-0,17	0,4325	0,4857	0,0532
6	80	7	6400	560	44800	24	2,51	6,32	44,25	0,29	0,6141	0,6857	0,0716
7	84	4	7056	336	28224	28	6,51	42,44	169,74	0,75	0,7734	0,8000	0,0266
8	88	5	7744	440	38720	33	10,51	110,55	552,75	1,21	0,8869	0,9429	0,0560
9	92	1	8464	92	8464	34	14,51	210,66	210,66	1,68	0,9535	0,9714	0,0179
10	96	1	9216	96	9216	35	18,51	342,78	342,78	2,14	0,9838	1,0000	0,0162
Jum	lah	35	62160	2712					2626,74				Lo = 0.1357
Rata	ı-rata			77,49									
	S^2								75,05			Lt	0,1498
	S							8,66			Lo	0,1357	
												Lo < Lt	Normal

Lampiran 43. Uji Homogenitas Kelas Sampel

Uji Homogenitas Kelas Sampel

Kelas	a	N	x rata-rata	S	S^2
Eksperimen	0,05	35	85,83	8,08	65,23
Kontrol	0,05	35	77,49	8,66	75,05

F hitung varians terbesar / varians terkecil 1,15

No	Kelas		Varians terkecil	dk (n-1)	db (n-1)	F hitung	F tabel
1	X MIPA 5 dan X MIPA 6	75,05	65,23	34	34	1,15	1,84

Keterangan F hit < F tabel	Analisis Sampel
Homogen	Terdistribusi Normal dan Homogen

Lampiran 44. Uji Hipotesis Penelitian

Uji Hipotesis (Uji-t) Tes Akhir

Kedua kelas sampel terdistribusi normal dan mempunyai varians yang homogen maka dalam melakukan uji hipotesis digunakan uji t.

$$\bar{x} = 85.83$$
 $\bar{x} = 77.49$
 $s_1^2 = 65.23$ $s_2^2 = 75.05$
 $n = 35$ $n = 35$

Harga S dicari dengan rumus:

$$S = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}$$

$$S = \sqrt{\frac{(35 - 1)65.23 + (35 - 1)75.05}{35 + 35 - 2}}$$

$$S = 8,37$$

$$t_{hitung} = \frac{\bar{x}_1 - \bar{x}_2}{S\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$
$$= \frac{85.83 - 77.49}{8.37\sqrt{\frac{1}{35} + \frac{1}{35}}} = 4.15$$

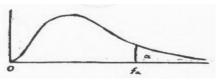
Pada taraf nyata $\alpha = 0.05$ dan derajat kebebasan (dk) = $n_1 + n_2 - 2 = 68$, t_{tabel} mempunyai harga sebesar:

$$t_{tabel} = t_{(1-\alpha),(dk)}$$
 $t_{tabel} = t_{(1-0,05),(68)}$
 $t_{tabel} = 1,67$

Terlihat bahwa pada taraf nyata $\alpha = 0.05$ harga $\mathbf{t_{hitung}} > \mathbf{t_{tabel}}$ sehingga dapat disimpulkan bahwa hasil belajar siswa dengan menggunakan modul kimia berbasis *discovery learning* lebih tinggi secara signifikan daripada hasil belajar siswa tanpa menggunakan modul dan **hipotesis penelitian diterima.**

Luas

Lampiran 45. Wilayah Luas di Bawah Kurva Normal


.00 0.01								
	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
.00 0.01	0.02	0.03	0.04	0.03	0.00	0.07	0.08	0.03
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
0.0018	0.0017	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
0.0035	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
0.0034	0.0044	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
	0.0059						0.0037	
0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
0.0793	0.0778	0.0764	0.0749	0.0735	0.0722	0.0708	0.0694	0.0681
0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
1151 0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
1357 0.1335	0.1112	0.1093	0.1073	0.1050	0.1038	0.1020	0.1003	0.0383
1587 0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
1841 0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
2119 0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
2420 0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
2743 0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
3085 0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
3446 0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
3821 0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
1207 0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
1602 0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641
0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
5398 0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
793 0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
5179 0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
5554 0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
5915 0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
7257 0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
7580 0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
7881 0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
3159 0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
3413 0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
3643 0.8665	0.8686	0.8483	0.8729	0.8331	0.8334	0.8377	0.8355	0.8830
3849 0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
9032 0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.91//
9192 0.9207	0.9222	0.9236	0.9251	0.9265	0.9278	0.9292	0.9306	0.9319
9332 0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
9452 0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
9554 0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
9713 0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
		-	-		-	-		
9772 0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
	0.9830	0.9834	0.9793		0.9846			0.9817
				0.9842		0.9850	0.9854	
0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
9891 0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
9918 0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
9938 0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
9953 0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
9965 0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
9974 0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
9981 0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
								0.9990
9990 0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
9993 0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
9995 0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
								0.9998
0.5557	5.5557	0.555,	5.5557	3.333,	0.5557	0.555,	0.555,	0.5550
9993	0.9993	0.9991 0.9991 0.9993 0.9994 0.9995 0.9995	0.9991 0.9991 0.9991 0.9993 0.9994 0.9994 0.9995 0.9995 0.9996	0.9991 0.9991 0.9992 0.9993 0.9994 0.9994 0.9994 0.9995 0.9995 0.9996 0.9996	0.9991 0.9991 0.9992 0.9992 0.9993 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9996 0.9996 0.9996	0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996	0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996	0.9991 0.9991 0.9992 0.9992 0.9992 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996

Lampiran 46. Tabel Nilai Kritis L untuk Uji Liliefors

NILAI KRITIS L UNTUK UJI LILIEFORS

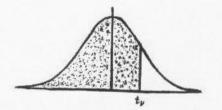
UkuranSampel		Та	arafNyata (d	α)	
Okuransamper	0,01	0,05	0,10	0,15	0,20
n = 4	0,417	0,381	0,352	0,319	0,300
5	0,405	0,337	0,315	0,299	0,285
6	0,364	0,319	0,294	0,277	0,265
7	0,348	0,300	0,276	0,258	0,247
8	0,331	0,285	0,261	0,244	0,233
9	0,311	0,271	0,249	0,233	0,223
10	0,294	0,258	0,239	0,224	0,215
11	0,284	0,249	0,230	0,217	0,206
12	0,275	0,242	0,223	0,212	0,199
13	0,268	0,234	0,214	0,202	0,190
14	0,261	0,227	0,207	0,194	0,183
15	0,257	0,220	0,201	0,187	0,177
16	0,250	0,213	0,195	0,182	0,173
17	0,245	0,206	0,189	0,177	0,169
18	0,239	0,200	0,184	0,173	0,166
19	0,235	0,195	0,179	0,169	0,163
20	0,231	0,190	0,174	0,166	0,160
25	0,200	0,173	0,158	0,147	0,142
30	0,187	0,161	0,144	0,136	0,131
n > 30	$\frac{1,031}{\sqrt{n}}$	$\frac{0,886}{\sqrt{n}}$	$\frac{0,805}{\sqrt{n}}$	$\frac{0,768}{\sqrt{n}}$	$\frac{0,736}{\sqrt{n}}$

Lampiran 47. Nilai Kritik Sebaran F

U_2					Y_1				
	1	2	3	4	5	6	7	8	9
1	161,4	199,5	215,7	224,6	230,2	234,0	236,8	238,9	240,5
2	18,51	19,00	19,16	19,25	19,30	19,33	19,35	19,37	19,38
3	10,13	9,55	9,28	9,12	9,01	8,94	8,89	8,85	8,81
4	7,71	6,94	6,59	6,39	6,26	6,16	6,09	6,04	6,00
5	6,61	5,79	5,41	5,19	5,05	4,95	4,88	4,82	4,77
6	5,99	5,14	4,76	4,53	4,39	4,28	4,21	4,15	4,10
7	5,59	4,74	4,35	4,12	3,97	3,87	3,79	3,73	3,68
8	5,32	4,46	4,07	3,84	3,69	3,58	3,50	3,44	3,39
9	5,12	4,26	3,86	3,63	3,48	3,37	3,29	3,23	3,18
10	4,96	4,10	3,71	3,48	3,33	3,22	3,14	3,07	3,02
11	4,84	3.98	3,59	3,36	3,20	3,09	3,01	2,95	2,90
12	4,75	3,89	3,49	3,26	3,11	3,00	2,91	2,85	2,80
13	4,67	3,81	3,41	3,18	3,03	2,92	2,83	2,77	2,71
14	4,60	3,74	3,34	3,11	2,96	2,85	2,76	2,70	2,65
4.5	4.5.4	2.60	2.20	2.00	2.00	2.70	2.74	2.64	2.50
15	4,54	3,68	3,29	3,06	2,90	2,79	2,71	2,64	2,59
16	4,49	3,63	3,24	3,01	2,85	2,74	2,66	2,59	2,54
17	4,45	3,59	3,20	2,96	2,81	2,70	2,61	2,55	2,49
18	4,41	3,55	3,16	2,93	2,77	2,66	2,58	2,51	2,46
19	4,38	3,52	3,13	2,90	2,74	2,63	2,54	2,48	2,42
20	4 2E	2.40	2 10	2 07	2 71	2.60	2 51	2.45	2 20
20 21	4,35	3,49	3,10	2,87	2,71 2,68	2,60	2,51	2,45	2,39 2,37
22	4,32 4,30	3,47	3,07 3,05	2,84 2,82	2,66	2,57	2,49	2,42	
23	4,28	3,44 3,42	3,03	2,82	2,64	2,55 2,53	2,46 2,44	2,40 2,37	2,34 2,32
24	4,26	3,40	3,03	2,78	2,62	2,53	2,44	2,37	2,32
24	4,20	3,40	3,01	2,70	2,02	2,31	2,42	2,30	2,30
25	4,24	3,39	2,99	2,76	2,60	2,49	2,40	2,34	2,28
26	4,23	3,37	2,98	2,74	2,59	2,47	2,39	2,32	2,27
27	4,21	3,35	2,96	2,73	2,57	2,46	2,37	2,31	2,25
28	4,20	3,34	2,95	2,71	2,56	2,45	2,36	2,29	2,24
29	4,18	3,33	2,93	2,70	2,55	2,43	2,35	2,28	2,22
	,	-,	,	,	,	,	,	,	,
30	4,17	3,32	2,92	2,69	2,53	2,42	2,33	2,27	2,21
40	4,08	3,23	2,84	2,61	2,45	2,34	2,25	2,18	2,12
60	4,00	3,15	2,76	2,53	2,37	2,25	2,17	2,10	2,04
120	3,92	3,07	2,68	2,45	2,29	2,17	2,09	2,02	1,96
8	3,84	3,00	2,60	2,37	2,21	2,10	2,01	1,94	1,88

Disalin dari Tabel 18 *Biometrika Tables for Statisticians*, Jilid I seizin E. S. Pearson dan Biometrika Trustees

					y	' 1				
U_2	10	12	15	20	24	30	40	60	120	8
1	241,9	243,9	245,9	248,0	249,1	250,1	251,1	252,2	253,3	254,3
2	19,40	19,41	19,43	19,45	19,45	19,46	19,47	19,48	19,49	19,50
3	8,79	8,74	8,70	8,66	8,64	8,62	8,59	8,57	8,55	8,53
4	5,96	5,91	5,86	5,80	5,77	5,75	5,72	5,69	5,66	5,63
5	4,74	4,68	4,62	4,56	4,52	4,50	4,46	4,43	4,40	4,36
6	4,06	4,00	3,94	3,87	3,84	3,81	3,77	3,74	3,70	3,67
7	3,64	3,57	3,51	3,44	3,41	3,38	3,34	3,30	3,27	3,23
8	3,35	3,28	3,22	3,15	3,12	3,08	3,04	3,01	2,97	2,93
9	3,14	3,07	3,01	2,94	2,90	2,86	2,83	2,79	2,75	2,71
10	2,98	2,91	2,85	2,77	2,74	2,70	2,66	2,62	2,58	2,54
11	2,85	2,79	2,72	2,65	2,61	2,57	2,53	2,49	2,45	2,40
12	2,75	2,69	2,62	2,54	2,51	2,47	2,43	2,38	2,34	2,30
13	2,67	2,60	2,53	2,46	2,42	2,38	2,34	2,30	2,25	2,21
14	2,60	2,53	2,46	2,39	2,35	2,31	2,27	2,22	2,18	2,13
15	2,54	2,48	2,40	2,33	2,29	2,25	2,20	2,16	2,11	2,07
16	2,49	2,42	2,35	2,28	2,24	2,19	2,15	2,11	2,06	2,01
17	2,45	2,38	2,31	2,23	2,19	2,15	2,10	2,06	2,01	1,96
18	2,41	2,34	2,27	2,19	2,15	2,11	2,06	2,02	1,97	1,92
19	2,38	2,31	2,23	2,16	2,11	2,07	2,03	1,98	1,93	1,88
20	2.25	2.20	2 20	2.12	2.00	2.04	1.00	1.05	1.00	1.04
20	2,35	2,28	2,20	2,12	2,08	2,04	1,99	1,95	1,90	1,84
21 22	2,32	2,25	2,18	2,10	2,05	2,01	1,96	1,92	1,87	1,81
23	2,30 2,27	2,23 2,20	2,15 2,13	2,07 2,05	2,03 2,01	1,98 1,96	1,94 1,91	1,89 1,86	1,84 1,81	1,78
24	2,27	2,20		2,03	1,98	1,94	1,89	1,84	1,79	1,76 1,73
24	2,23	2,10	2,11	2,03	1,56	1,54	1,65	1,04	1,79	1,73
25	2,24	2,16	2,09	2,01	1,96	1,92	1,87	1,82	1,77	1,71
26	2,24	2,15	2,03	1,99	1,95	1,90	1,85	1,80	1,75	1,69
27	2,20	2,13	2,06	1,97	1,93	1,88	1,84	1,79	1,73	1,67
28	2,19	2,12	2,04	1,96	1,91	1,87	1,82	1,77	1,71	1,65
29	2,18	2,10	2,03	1,94	1,90	1,85	1,81	1,75	1,70	1,64
	_,_0	_,_9	_,55	_,5 .	_,55	_,55	_,=,	_,,,	_,, 3	_, -, -
30	2,16	2,09	2,01	1,93	1,89	1,84	1,79	1,74	1,68	1,62
40	2,08	2,00	1,92	1,84	1,79	1,74	1,69	1,64	1,58	1,51
60	1,99	1,92	1,84	1,75	1,70	1,65	1,59	1,53	1,47	1,39
120	1,91	1,83	1,75	1,66	1,61	1,55	1,50	1,43	1,35	1,25
∞	1,83	1,75	1,67	1,57	1,52	1,46	1,39	1,32	1,22	1,00


Disalin dari Tabel 18 *Biometrika Tables for Statisticians*, Jilid I seizin E. S. Pearson dan

Biometrika Trustees

Lampiran 48. Tabel Nilai Persentil untuk Distribusi T

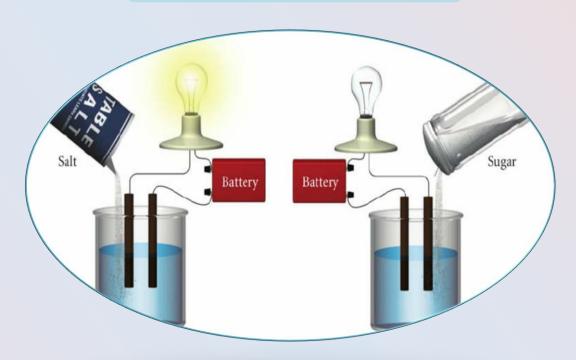
Nilai Persentil Untuk Distribusi T

Nilai Persentil Untuk Distribusi tv=dk (Bilangan Dalam Badan Daftar Menyatakan t_p)

						Section 11				
υ	t _{0,995}	t _{0,99}	t _{0,975}	t _{0,95}	t _{0,90}	$t_{0,80}$	$t_{0,75}$	$t_{0,70}$	$t_{0,60}$	t _{0,55}
1	63,66	31,82	12,71	6,31	3,08	1,376	1,000	0,727	0,325	0,158
2	9,92	6,96	4,30	2,92	1,89	1,961	0,816	0,617	0,289	0,142
3	5,84	4,54	3,18	2,35	1,64	0,978	0,765	0,584	0,237	0,137
4	4,60	3,75	2,78	2,33	1,53	0,941	0,763	0,569	0,277	0,137
4	4,00	3,73	2,78	2,13	1,33	0,941	0,741	0,309	0,271	0,134
5	4,03	3,36	2,57	2,02	1,48	0,920	0,727	0,559	0,267	0,132
6	3,71	2,14	2,45	1,94	1,44	0,906	0,718	0,553	0,265	0,131
7	3,50	3,00	2,36	1,90	1,42	0,896	0,711	0,549	0,263	0,130
8	3,36	2,90	2,31	1,86	1,40	0,889	0,706	0,546	0,262	0,130
9	3,25	2,82	2,26	1,83	1,38	0,883	0,703	0,543	0,261	0,129
10	3,17	2,76	2,23	1,81	1,37	0,879	0,700	0,542	0,260	0,129
11	3,11	2,72	2,20	1,80	1,36	0,876	0,697	0,540	0,260	0,129
12	3,06	2,68	2,18	1,78	1,36	0,873	0,695	0,539	0,259	0,128
13	3,00	2,65	2,16	1,73	1,35	0,873	0,694	0,539	0,259	0,128
				1,76		0,868				
14	2,98	2,62	2,14	1,70	1,34	0,808	0,692	0,537	0,258	0,128
15	2,95	2,60	2,13	1,75	1,34	0,866	0,691	0,536	0,258	0,128
16	2,92	2,58	2,12	1,75	1,34	0,865	0,690	0,535	0,258	0,128
17	2,90	2,57	2,11	1,74	1,33	0,864	0,689	0,534	0,257	0,128
18	2,88	2,55	2,10	1,73	1,33	0,862	0,688	0,534	0,257	0,127
19	2,86	2,54	2,09	1,73	1,33	0,861	0,688	0,533	0,257	0,127
20	2,84	2,53	2,09	1,72	1,32	0,860	0,687	0,533	0,257	0,127
21										
	2,83	2,52	2,08	1,72	1,32	0,859	0,686	0,532	0,257	0,127
22	2,82	2,51	2,07	1,72	1,32	0,858	0,686	0,532	0,256	0,127
23	2,81	2,50	2,07	1,71	1,32	0,858	0,685	0,532	0,256	0,127
24	2,80	2,49	2,06	1,71	1,32	0,857	0,685	0,531	0,256	0,127
25	2,79	2,48	2,06	1,71	1,32	0,856	0,684	0,531	0,256	0,127
26	2,78	2,48	2,06	1,71	1,32	0,856	0,684	0,531	0,256	0,127
27	2,77	2,47	2,05	1,70	1,31	0,855	0,684	0,531	0,256	0,127
28	2,76	2,47	2,05	1,70	1,31	0,855	0,683	0,530	0,256	0,127
29	2,76	2,46	2,04	1,70	1,31	0,854	0,683	0,530	0,256	0,127
20	2.75	2.45	2.04	1.70	1.21	0.074	0.603	0.520	0.256	0.107
30	2,75	2,46	2,04	1,70	1,31	0,854	0,683	0,530	0,256	0,127
40	2,70	2,42	2,02	1,68	1,30	0,853	0,681	0,529	0,255	0,126
60	2,66	2,39	2,00	1,67	1,30	0,848	0,679	0,527	0,254	0,126
120	2,62	2,36	1,98	1,66	1,29	0,845	0,677	0,526	0,254	0,126
∞	2,58	2,33	1,96	1,64	1,28	0,842	0,674	0,524	0,253	0,126
<u></u>										

Sumber: Statistical Tables for Biological, Agricultural and Medical Research, Fisher, R. A. dan Yates, F

Table III, Oliver & Boyd Ltd, Edinburgh.


Lampiran 49. Surat Keterangan Setelah Penelitian

Modul Kimia

Berbasis Discovery Learning dengan Pendekatan Saintifik

Kelas X Semester 2

Larutan Elektrolit dan Non-elektrolit

Kata Pengantar

Puji syukur kehadirat Allah SWT karena dengan rahmat-Nya penulis dapat menyelesaikan penyusunan Modul Kimia Berbasis *Discovery Learning* dengan Pendekatan *Scientific*. Modul ini dipersiapkan sebagai panduan bagi guru dan siswa dalam proses pembelajaran kimia untuk materi Larutan Elektrolit dan non-Elektrolit kelas X SMA/MA.

Modul ini disusun berdasarkan aktivitas 5M, yaitu mengamati, menanya, mencoba (eksperimen), mengasosiasikan, dan mengkomunikasikan dengan menggunakan model discovery learning. Dimana, 5M tersebut terdapat dalam enam tahap pembelajaran model discovery learning, yaitu stimulasi, identifikasi masalah, pengumpulan data, pengolahan data, pembuktian dan menarik kesimpulan. Materi Larutan Elektrolit dan non-Elektrolit ini disajikan dengan runtut disertai contoh-contoh dan ilustrasi yang jelas. Penjelasan setiap materi disertai dengan gambar, serta latihan-latihan untuk memperjelas konsep yang disajikan.

Dalam menyajikan materi, modul ini dilengkapi dengan percobaan-percobaan sederhana di laboratorium, yang diharapkan akan lebih membantu meningkatkan pemahaman para siswa. Pada akhir materi juga disajikan evaluasi sehingga para siswa dapat lebih memahami konsep yang dipelajari.

Demikianlah, penulis berharap modul kimia berbasis discovery learning dengan pendekatan saintifik dapat bermanfaat dalam proses pembelajaran kimia, khususnya materi Larutan Elektrolit dan non-Elektrolit. Penulis mengharapkan kritik dan saran yang bersifat membangun untuk perbaikan modul ini.

Padang, Desember 2016

Penulis

Dastar Isi

Kata Pengantar1
Daftar Isi2
Kompetensi Inti3
Kompetensi Dasar3
Indikator4
Tujuan Pembelajaran4
Pengetahuan Faktual, Konseptual, dan Prosedural5
Peta Konsep Larutan Elektrolit dan non-Elektrolit6
Petuntuk Penggunaan Modul
Lembar Kegiatan 19
• Kegiatan 1.a9
• Kegiatan 1.b
Lembar Kerja 1
Lembar Kegiatan 2
Lembar Kerja 2
Lembar Kegiatan 3
• Kegiatan 3.a
• Kegiatan 3.b41
Lembar Kerja 3
Lembar Kegiatan 4
Lembar kerja 451
Soal Uji Kompetensi
Kunci Jawaban Lembar Kerja57
Kunci Jawaban Soal Uji Kompetensi59
Kunci Jawaban Lembar Kegiatan60
Daftar Pustaka67