TUGAS AKHIR

Evaluasi Perencanaan Biaya Penggalian Batubara Tahun 2015 di Muara Tiga Besar Selatan PT. Bukit Asam (Persero) Tbk.

Diajukan Sebagai Salah Satu Syarat dalam Menyelesaikan Program S1 Teknik Pertambangan

Oleh:

Nuris Sartika BP. 2011/1102378

Konsentrasi : Pertambangan Umum Program Studi : S1 Teknik Pertambangan Jurusan : Teknik Pertambangan

FAKULTAS TEKNIK UNIVERSITAS NEGERI PADANG 2015

HALAMAN PERSETUJAUN TUGAS AKHIR

EVALUASI PERENCANAAN BIAYA GALIAN BATUBARA TAHUN 2015 DI MUARA TIGA BESAR SELATAN PT. BUKIT ASAM (PERSERO), TBK.

Oleh

Nama : Nuris Sartika NIM/BP : 1102378/2011

Program studi : Teknik Pertambangan (S1) Jurusan : Teknik Pertambangan

Fakultas : Teknik

Padang, Agustus 2015

Disetujui oleh

Pembimbing I,

Pembimbing II,

Drs. Rusli HAR, MT

NIP. 19630316 1990100 1 001

<u>Drs. Syamsul Bahri, MT</u> NIP. 19570101 198303 1 006

Mengetahui, Ketua Jurusan Teknik Pertambangan Fakultas Teknik Universitas Negeri Padang

> <u>Drs. Bambang Heriyadi, MT</u> NIP. 19641114 198903 1 002

HALAMAN PENGESAHAN TUGAS AKHIR

Dinyatakan **Lulus** Setelah Dipertahankan di Depan Tim Penguji Skripsi Jurusan Teknik Pertambangan Fakultas Teknik Universitas Negeri Padang Pada Tanggal 12 Agustus 2015

Judul Skripsi : Evaluasi Perencanaan Biaya Galian Batubara Tahun 2015

di Muara Tiga Besar Selatan, PT. Bukit Asam (Persero),

Tbk.

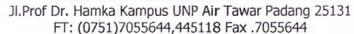
Nama : Nuris Sartika NIM/BP : 1102378/2011

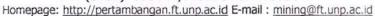
Program Studi : Teknik Pertambangan (S1) Jurusan : Teknik Pertambangan

Fakultas : Teknik

Padang, Agustus 2015

Dewan Penguji


Nama		Tanda Tangan
1. Ketua	: Drs. Rusli HAR, MT	1. hunter
2. Sekretaris	: Drs. Syamsul Bahri, MT	2
3. Anggota	: Drs. Raimon Kopa, MT	3
4. Anggota	: Adree Octova, S. Si, MT	4.
5. Anggota	: Dedi Yulhendra, MT	5.



KEMENTERIAN RISET, TEKNOLOGI DAN PENDIDIKAN TINGGI UNIVERSITAS NEGERI PADANG

FAKULTAS TEKNIK

JURUSAN TEKNIK PERTAMBANGAN

SURAT PERNYATAAN TIDAK PLAGIAT

udul 915.
QIS.
arya
edia
dan
gung

Ketua Jurusan Teknik Pertambangan

<u>Drs. Bambang Heriyadi, MT</u> NIP. 19641114 198903 1 002

Management System ISO 9001:2008
TIJVRheinland Cattiff(20) www.tuv.com in 9105068449

F.1 – PPK – 12 Tanggal Terbit 06-04-2009 C9DEADC051686915

Nuris Sartika

ABSTRAK

Noris Sartika : Evaluasi Perencanaan Biaya Galian Batubara Tahun 2015 di Muara Tiga Besar Selatan (MTBS), PT. Bukit Asam (Persero), Tbk.

PT. Bukit Asam (Persero) Tbk. Target produksi batubara pada tahun 2014 adalah 2.500.000 ton sedangkan data realisasi penambangan batubara pada tahun 2014 adalah 2.141.530 ton sehingga harus dilakukan dilakukan evaluasi biaya galian pada triwulan pertama tahun 2015 terhadap proses penambangan maupun pengguanaan alat dan merencanakan pada triwulan kedua, ketiga dan keempat tahun 2015. Berdasarkan pengamatan di lapangan, ditemukan bahwa, tidak singkronnya alat gali muat dengan alat angkut ini akan menyebabkan menurunnya produksi, curah hujan yang begitu tinggi pada bulan Februari tahun 2015 (lampiran K) dan biaya produksi semakin meningkat, tidak tercapainya target produksi yang telah ditetapkan oleh perusahaan pada tahun 2014,

Metode penelitian ini menggunakan terapan (*Applied Research*) pada penelitian ini menggunakan analisis teori, Teknik analisa data dengan menggunakan teori dengan data-data di lapangan baik data primer maupun sekunder sehingga dari keduanya dapat diselesaikan adalah waktu edar, menghitung produksi, *match Factor*, simulasi, *mechanical avaibility*, menghitung biaya batubara, menghitung harga sewa alat.

Hasil analisi data menunjukkan bahwa *Match Factor* pada triwulan pertama menggunakan 1 *excavator* PC 400 dengan 7 *dump truck* triwulan kedua menggunakan 2 *excavator* PC 400 dengan 14 *dump truck*, pada triwulan ketiga 2 *excavator* PC 800 dan 16 *dump truck*, dan triwulan keempat menggunakan 2 *excavator* PC 400 dengan 14 *dump truck*, karena lokasi loadingnya sempit dan jalan hanya satu jalur, sedangkan untuk singkronnya alat menggunakan 1 *Excavator* PC 400 8 *dump truck* dan *Excavator* PC 800 dengan 9 *dump truck*, tapi satu dump truck tidak berkerja full. Produksi batubara triwulan pertama adalah 260.000 ton sedangkan biaya pada triwulan pertama Rp. 4.734.726.646 dan biaya operating cost sebesar Rp. 666.850.445, Biaya produksi dan sewa alat batubara pada triwulan kedua sampai triwulan empat sebesar Rp. 15.537.142.332 sedangkan operating cost sebesar Rp. 23.334.269.637 dan biaya operating cost Rp 5.375.896.293

Kata Kunci: Produksi, biaya, *Match Factor*

KATA PENGANTAR

Puji syukur penulis ucapkan kehadirat Allah Subhana Wata'ala atas segala rahmat dan karunia serta hidayah-Nya yang telah memberikan kekuatan pada penulis, sehingga dapat menyelesaikan proposal penelitian ini yang berjudul "Evaluasi Perencanaan Biaya Galian Batubara Tahun 2015 di Muara Tiga Besar Selatan PT. Bukit Asam (Persero), Tbk." Penulisan proposal ini dalam rangka memenuhi salah satu syarat menyelesaikan program studi S1 pada Jurusan Teknik Mesin Fakultas Teknik Universitas Negeri Padang (UNP).

Dalam penulisan tugas akhir ini, penulis telah banyak mendapat bantuan dan dorongan baik materil maupun moril dari berbagai pihak, maka pada kesempatan ini penulis dengan segala kerendahan hati mengucapkan terima kasih yang sebesar besarnya kepada:

- 1. Bapak Drs. Rusli HAR, MT. selaku dosen pembimbing I.
- 2. Bapak Drs. Syamsul Bahri, MT. selaku dosen pembimbing II.
- 3. Bapak Drs. Bambang Heriyadi, MT Selaku Ketua Jurusan Teknik Pertambangan Fakultas Teknik Universitas Negeri Padang.
- 4. Bapak dan Ibu Dosen yang mengajar di Jurusan Teknik Pertambangan.
- 5. Teristimewa kedua Orang tua serta saudara penulis tercinta.
- 6. Seluruh rekan-rekan mahasiswa Jurusan Teknik Pertambangan dan semua pihak yang telah ikut memberikan dorongan dan motivasi kepada penulis.

Semoga bantuan, bimbingan dan petunjuk yang diberikan menjadi amal ibadah dan mendapatkan balasan yang berlipat ganda dari Allah Subhana Wata'ala. Penulisan proposal ini tidak lepas dari ketidaksempurnaan, oleh sebab penulis berharap kritik dan saran yang bermanfaat untuk kesempurnaan penulisan proposal ini. Semoga Allah Subhana wata'ala senantiasa memberkati dan meridhai kita semua. Aamiin.

Padang, Agustus 2015

Penulis

DAFTAR ISI

Hala	man
ABSTRAK	i
KATA PENGANTAR	ii
DAFTAR ISI	iv
DAFTAR TABEL	vi
DAFTAR GAMBAR	vii
DAFTAR LAMPIRAN	viii
BAB I. PENDAHULUAN	
A. Latar Belakang	1
B. Identifikasi Masalah	3
C. Batasan Masalah	4
D. Rumusan Masalah	4
E. Tujuan	5
F. Manfaat	5
BAB II. TOPIK BAHASAN	
A. Sejarah Perusahaan	6
Lokasi Penelitian	9
2. Keadaan Topgrafi	11
3. Geologi dan Statigrafi	12
4. Iklim dan Curah Hujan	19
5. Cadangan dan kualitas Batubara	19
BAB III. TEORI DASAR	
A. Alat yang digunakan	23
B. Kegiatan Penambangan	35

BAB IV. METODOLOGI PENELITIAN

A. Jenis Penelitian	46
B. Instrumen Penelitian	46
C. Teknik Pengumpulan Data	46
D. Pengolahan Data	47
E. Teknik Analisa Data	48
F. Kerangka Penelitian	52
BAB V. HASIL PENELITIAN DAN PEMBAHASAN	
A .Kegiatan Produksi Batubara.	53
B. Produksi Alat	56
C. Rencana Produksi Tahun 2015	58
D. Tabel Perhitungan Biaya Tahun 2015	73
BAB VI. KESIMPULAN dan SARAN	
A. Kesimpulan	84
B. Saran	84
DAFTAR PUSTAKA	

DAFTAR TABEL

Tabel Hala	man
1. Curah Hujan Tahun 2015	19
2. Klasifikasi Batubara Berdasarkan spesifikasi <i>Mine Brand</i>	21
3. Klasifikasi Batubara Berdasarkan spesifikasi <i>Market Brand</i>	22
4. Rencana Produksi Batubara Tahun 2015 per tri Wulan	58
5. Jumlah Alat Triwulan Pertama	74
6. Jumlah Alat Triwulan Kedua	74
7. Jumlah Alat Triwulan Ketiga	74
8. Jumlah Alat Triwulan Keempat	75
9. Biaya Sewa Alat Triwulan Pertama	75
10. Biaya Sewa Alat Triwulan Kedua	75
11. Biaya Sewa Alat Triwulan Ketiga	76
12. Biaya Sewa Alat Triwulan Keempat	76
13. Biaya sewa tahun 2015	76
14. Biaya Produksi Pertriwulan Tahun 2015	76
15. Total biaya tahun 2015	77
16. Operating Cost Bulldozer 373 A	77
17. Operating Cost Excavator PC 400	78
18. Operating Cost Dump Truck	78
19. Operating Cost Bulldozer 373 A	79
20. Operating Cost Excavator PC 400	79
21. Operating Cost Dump Truck	80
22. Operating Cost Bulldozer 373 A	80
23. Operating Cost Excavator PC 800	81
24. Operating Cost Dump Truck	81
25. Operating Cost Bulldozer 373 A	82
26. Operating Cost Excavator PC 400	82
27. Operating Cost Dump Truck	83
28 Total Biava Operating Cost	83

DAFTAR GAMBAR

Ga	ambar Hala	aman
1.	Foto Udara Lokasi Pertambangan Tanjung Enim	9
2.	Peta Regional PT. Bukit Asam (Persero) Tbk	10
3.	Lokasi Penelitian	12
4.	Penampang Litologi Daerah Penambangan MTBS	14
5.	Bulldozer	24
6.	Excavator	25
7.	Dump Truck	26
8.	Kegiatan Lean Clearing	37
9.	Loading Over Burden	38
10.	Pengangkutan Over Burden	39
11.	. Ripping Batubara	40
12.	Loading Batubara	41
13.	Pengangkutan Batubara	42
14.	. Dumping Batubara	43
15.	. Temporary Stock Pile	45
16.	Perawatan Jalan	45
17.	. Ripping Batubara	53
18.	. Loading Batubara	54
19.	Pengangkutan Batubara	55
20.	. Dumping Batubara	55

DAFTAR LAMPIRAN

Lampiran A	Waktu Edar Alat Muat Batubara PC 800	87
Lampiran B	Waktu Edar Alat Muat Batubara PC 400	88
Lampiran C1	Waktu Edar Alat Angkut Batubara PC 800	89
Lampiran C2	Waktu Edar Alat Angkut Batubara PC 800	90
Lampiran D1	Waktu Edar Alat Angkut Batubara PC 400	91
Lampiran D2	Waktu Edar Alat Angkut Batubara PC 400	92
Lampiran E	Jam Jalan Efektif	94
Lampiran F	Spesifikasi Alat Gali Muat	99
Lampiran G	Swell Factor dan Density Insitu	101
Lampiran H	Spesifikasi Teknis Alat Angkut Batubara	102
Lampiran I	Efisiensi & Faktor Koreksi Alat – Alat Mekanis	103
Lampiran J	Spesifikasi Buldozer <i>ripping 375</i> A Batubara	104
Lampiran K	Biaya Angkut Produksi	105
Lampiran L	Tarif Sewa Alat	106
Lampiran M	Curah Hujan Tahun 2015	107

BAB I PENDAHULUAN

A. Latar Belakang

Penambangan adalah kegiatan yang memanfaatkan sumber daya alam untuk menghasilkan berbagai produk akhir yang di butuhkan bagi manusia. Saat ini Indonesia sedang dihadapkan pada persoalan multi dimensi yang salah satunya berdampak pada kecilnya penerimaan devisa negara dan meningkatnya angka pegangguran.

Batubara sebagai salah satu komoditi tambang yang strategis, saat ini diharapkan mampu berperan di dalam menanggulangi persoalan yang sedang dihadapi negara ini. Disisi lain batubara juga diharapkan mampu berperan dalam penerimaan devisa negara dan penyediaaan kebutuhan energi yang murah di dalam negeri.

Batubara merupakan salah satu sumber energi utama yang saat ini digunakan oleh pemerintah Indonesia dalam mengatasi cadangan energi minyak dan gas bumi yang semakin menipis. Kebutuhan akan energi yang semakin meningkat, terutama untuk memenuhi kebutuhan energi pembangkit tenaga listrik dan industri. Pemerintah membuka peluang sebasar besarnya bagi perusahaan swasta nasional maupun asing yang bergerak dibidang pertambangan untuk melakukan kegiatan eksploitasi batubara. Diperkirakan dalam kurun waktu dua atau tiga dekade yang akan datang, sumber energi minyak dan gas yang kita andalkan akan berkurang, sehingga pemerintah berusaha mencari sumber energi utama lain untuk konsumsi dalam energi.

Salah satu sumber energi utama lain adalah batubara dimana negara kita memiliki sumber cadangan batubara yang cukup besar.

Otonomi daerah yang mengatur undang-undang daerah salah satunya pendapatan daerah (PAD) yang memberikan kontribusi terbesar adalah batubara, maka diharapkan sumber energi batubara ini akan menjadi salah satu pendapatan yang berguna bagi Negara, khususnya sebagai (PAD) di Kabupaten Muara Enim, Sumatera Selatan, serta sebagai sumber energi dalam negeri dan komoditi ekspor.

PT. Bukit Asam (Persero), Tbk. merupakan perusahaan tambang batubara yang berlokasi di Tanjung Enim, Sumatera Selatan. Perusahaan ini memiliki 3 (tiga) lokasi penambangan, yaitu Tambang Air Laya dengan luas sekitar 7.700 Ha, Muara Tiga Besar dengan luas sekitar 3.300 Ha, dan Banko Barat dengan luas sekitar 4.500. Wilayah Izin Usaha Pertambangan (WIUP) PT. Bukit Asam (Persero), Tbk terletak di Tanjung Enim, Kecamatan Lawang Kidul, Kabupaten Muara Enim, Provinsi Sumatera Selatan. Perusahaan ini termasuk perusahaan terkemuka di tingkat nasional maupun internasional.

Tambang Muara Tiga Besar akan melakukan penambahan pembukaan lahan pada awal tahun 2015, dan belum ditentukannya berapa biaya dan berapa seperangkat alat (fleet) yang masuk ke dalam tambang Muara Tiga Besar (MTBS), karena seringnya harga dolar meningkat terhadap rupiah dan harga batubara di pasaran menurun, hal ini sangat berdampak terhadap perusahaan tambang batubara khususnya di PT. Bukit Asam (Persero) Tbk. Target produksi batubara pada tahun 2014 adalah 2.500.000 ton sedangkan

data realisasi penambangan batubara pada tahun 2014 adalah 2.141.530 ton sehingga harus dilakukan evaluasi biaya galian pada triwulan pertama tahun 2015 terhadap proses penambangan maupun pengguanaan alat dan merencanakan pada triwulan kedua, ketiga dan keempat tahun 2015.

Berdasarkan pengamatan di lapangan, ditemukan bahwa, tidak singkronnya alat gali muat dengan alat angkut ini akan menyebabkan menurunnya produksi, curah hujan yang begitu tinggi pada bulan Februari tahun 2015 (lampiran K) dan biaya produksi semakin meningkat, tidak tercapainya target produksi yang telah ditetapkan oleh perusahaan pada tahun 2014, karena tidak tercapainya target produksi oleh sebab itu peneliti menghitung biaya produksi batubara pada 2015 mendatang.

Menurunnya harga batubara mulai dari tahun 2013 sampai 1 semester tahun 2015 sehingga total keuntungan berdampak negatif, maka diperlukan evaluasi perencaan biaya dan optimalisasi dari kerja alat tambang utama (ATU) dan yang berhubungan dengan operasional alat tambang. Dalam hal oprasional penambangan berhubungan erat dengan penggalian batubara sehingga penulis mengambil judul "Evaluasi Perencanaan Biaya Galian Batubara Tahun 2015 di Muara Tiga Besar PT. Bukit Asam (Persero) Tbk".

B. Indentifikasi Masalah

Masalah dalam penelitian ini dapat diidentifikasi sebagai berikut:

- 1. Tingginya biaya penggalian batubara.
- 2. Tidak singkronnya alat galimuat dengan alat angkut.
- 3. evaluasi biaya galian pada triwulan pertama tahun 2015.
- 4. Merencanakan pada triwulan kedua, ketiga dan keempat tahun 2015.

- 5. Tidak tercapainya target produksi tahun 2014.
- 6. Kurang efektifnya waktu efisiensi kerja.
- 7. Tingginya curah hujan juga dapat mengurangi produksi batubara.
- 8. Kurang optomalnya alat yang digunakan.

C. Batasan Masalah

Banyaknya masalah yang mempengaruhi target produksi batubara dan supaya penelitian lebih terarah maka penulis membatasi penelitian Evaluasi Perencaan Biaya Galian Batubara Pada Tahun 2015 di Muara Tiga Besar Selatan, PT. Bukit Asam (Persero) Tbk. Selain itu dilakukan pada subjek yang akan diteliti yaitu: tidak singkronya alat galimuat dengan alat agkut, mengevaluasi biaya galian batubara triwulan pertama pada tahun 2015 dan merencanakan biaya penggalian batubara pada triwulan kedua, ketiga dan keempat tahun 2015.

D. Rumusan Masalah

Berdasarkan pembatasan masalah, dapat dirumuskan masalah penelitian sebagai berikut:

- 1. Berapakah *Macht Factor* alat galimuat dan alat angkut?
- 2. Berapa biaya galian batubara evaluasi triwulan pertama tahun 2015?
- 3. Berapa biaya galian batubara pada triwulan kedua, ketiga dan keempat tahun 2015?

E. Tujuan Penulisan

Tujuan Penulisan ini adalah:

- 1. Menghitung *Match Factor* alat galimuat.
- 2. Menghitun biaya galian batubara evaluasi triwulan pertama.
- Menghitun biaya galian batubara pada triwulan kedua, ketiga dan keempat tahun 2015.

F. Manfaat Penelitian

Adapun beberapa manfaat yang diharapkan dapat diperoleh dari penelitian ini adalah sebagai berikut:

- 1. Menghitung biaya penggalian batu bara pada tahun 2015.
- 2. Menentukan keserasian alat gali muat dengan alat angkut.
- Sebagai referensi tambahan baik itu di perusahaan maupun di Jurusan Teknik Pertambangan, Fakultas Teknik, Universitas Negeri Padang.
- 4. Dapat mengaplikasikan teori-teori yang telah dipelajari pada saat perkuliahan.

BAB II KONDISI UMUM DAERAH PENELITIAN

A. Sejarah Perusahaan PT. Bukit Asam (Persero), Tbk.

PT. Bukit Asam (Persero), Tbk. Unit Penambangan Tanjung Enim (UPTE) mengawali kegiatan eksplorasi pada Tahun 1915 sampai dengan 1918 dan mulai berproduksi pada Tahun 1919 dengan menggunakan metode penambangan terbuka pada wilayah operasi penambangan pertama adalah Tambang Air Laya (TAL). PT. Bukit Asam (Persero), Tbk. adalah sebuah Badan Usaha Milik Negara (BUMN) yang berdiri pada tanggal 2 Maret 1981 berdasarkan Peraturan Pemerintah No. 42 Tahun 1980 dengan letak kantor pusat di Tanjung Enim, Kecamatan Lawang Kidul, Sumatera Selatan.

Pengelolaan tambang batubara di Tanjung Enim telah mengalami banyak perubahan kepengurusan, lembaga-lembaga yang turut andil dalam kepengurusan PT. Bukit Asam (Persero), Tbk. dari tahun 1919 sampai dengan saat ini, adalah sebagai berikut :

- 1. Tahun 1919–1924 dikelola oleh Pemerintah Hindia Belanda.
- 2. Tahun 1942–1945 dikelola oleh Pemerintah Militer Jepang.
- 3. Tahun 1945–1947 dikelola oleh Pemerintah Republik Indonesia.
- 4. Tahun 1947–1949 dikelola oleh Pemerintah Belanda akibat adanya Agresi Militer II.
- 5. Tahun 1949–sekarang dikelola oleh Pemerintah Republik Indonesia.
- Tahun 1959-1960 oleh Biro Urusan Perusahaan Tambang Negara (BUPTAN).

- 7. Tahun 1961–1961 oleh Badan Pimpinan Umum (BPU) Perusahaan Tambang Batubara.
- 8. Tahun 1968–1980 oleh PN. Tambang Batubara.
- 9. Tahun 1981–sekarang oleh PT. Bukit Asam (Persero), Tbk.

Dalam Repelita III Pemerintahan Indonesia Membuat Proyek Pengembangan Pertambangan dan Pengangkutan Batubara, yang meliputi kegiatan:

- 1. Pengembangan Tambang Batubara Bukit Asam (PTBA).
- 2. Pengembangan Pelabuhan Batubara Bukit Asam (PTBA).
- 3. Pengembangan Angkutan Darat (Perumka)
- Pengembangan Angkutan Laut (PT. PANN/PT. Pelayaran Bahtera Adhiguna).

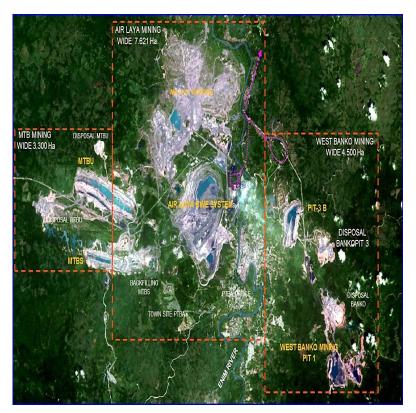
Maka sesuai dengan program pengembangan ketahanan energi nasional pada tahun 1993 Pemerintah Republik Indonesia memberikan anjuran untuk mengembangkan usaha briket batubara, pada Desember 2002. Perseroan mencatatkan diri sebagai perusahaan *Go Public* di Bursa Efek Indonesia dengan kode "PTBA". Proyek ini bertujuan untuk memasukkan batubara bagi PLTU Suralaya, Jawa Barat. Selain itu juga untuk memenuhi kebutuhan batubara dalam dan luar Negeri.

Dalam rangka memenuhi kebutuhan di atas, dikembangkan beberapa *site* di Wilayah Izin Usaha Pertambangan PT. Bukit Asam (Persero), Tbk:

a. Tambang Air Laya (TAL)

TAL merupakan site terbesar pada UPTE PT. Bukit Asam (Persero), Tbk. dengan luas WIUP 7700 Ha. Pada lokasi TAL ini diawali dengan 2 metode penambangan, yaitu: metode penambangan *continous mining* yang menggunakan *Bucket Wheel Excavator* (*BWE*) system dan metode Penambangan *shovel and truck* (menggunakan kombinasi antara *excavator* dan *dump truck*). Namun, saat ini PT. Bukit Asam (Persero), Tbk. hanya menggunakan metode *shovel and truck* agar dapat mempermudah pengambilan batubara dengan spesifikasi yang diinginkan pasar.

b. Muara Tiga Besar (MTB)


MTB merupakan *site* penambangan dengan WIUP 330 Ha. Muara Tiga Besar dibagi menjadi 2 area penambangan yaitu: Muara Tiga Besar Utara (MTBU) dan Muara Tiga Besar Selatan (MTBS).

MTBU merupakan *site* penambangan yang saat ini menggunakan metode penambangan *continous mining* dengan *BWE System*. Batubara dan tanah yang diambil menggunakan *BWE* akan ditransportasikan menggunakan *belt conveyor* menuju ke *spreader* sebagai sarana untuk penimbunan.

MTBS merupakan *site* penambangan yang menggunakan metode *shovel and truck* dengan PT. Pamapersada Nusantara sebagai kontraktor dan PT. Besar Cipta Karya sebagai sub-kontraktor.

c. Bangko Barat

Banko Barat memiliki WIUP 4500 Ha. Tambang Bangko Barat terdiri dari *Pit* I dan *Pit* III, dengan masing–masing *Pit* telah dibagi menjadi area penambangan yang lebih kecil yaitu *Pit* I Barat dan *Pit* I Timur sedangkan untuk *Pit* III juga dibagi menjadi *Pit* III Barat dan *Pit* III Timur.

Gambar 1. Foto Udara Lokasi Pertambangan Tanjung Enim Sumber : Diklat PT.Bukit Asam(Persero),Tbk

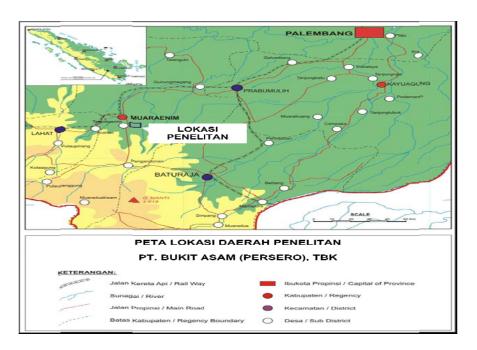
1. Lokasi Penelitian

Wilayah Izin Usaha Pertambangan (WIUP) PT. Bukit Asam (Persero), Tbk. terletak di Tanjung Enim, Kecamatan Lawang Kidul, Kabupaten Muara Enim, Sumatera Selatan dengan koordinat 103° 45' BT–103° 50' BT dan 3°42' 30' LS-4°47'30" LS. Jarak yang ditempuh dari Kota Palembang menuju

ke PT. Bukit Asam (Persero), Tbk. berkisar 200 Km. Untuk mencapai daerah ini dapat dilakukan dengan menggunakan jalan darat selama 4 jam seperti berikut.

Daerah Tanjung Enim merupakan daerah yang sangat bervariasi, karena wilayah ini termasuk dataran rendah, maka banyak terdapat aliran sungai serta rawa-rawa dengan elevasi 40 Meter di atas permukaan laut namun karena wilayah ini merupakan wilayah yang dilalui oleh bukit barisan maka daerah ini memiliki dataran tinggi dengan elevasi hingga 280 meter di atas permukaan laut. Dengan beragamnya elevasi tersebut maka akan sangat menyulitkan dalam peramalan arah dari lapisan batubara yang ada di lokasi tersebut.

Gambar 2 Peta Regional UPTE PT. Bukit Asam (Persero), Tbk.


Sumber: Diklat PT.Bukit Asam(Persero), Tbk

2. Keadaan Topografi

Secara umum daerah tambang PT. Bukit Asam (Persero), Tbk. mempunyai topografi yang bervariasi dimulai dengan banyaknya lokasi rawarawa, sungai serta cekungan yang berada pada dataran rendah yang berelevasi 50 meter di atas permukaan laut. Sungai—sungai tersebut akan bermuara di Sungai Lawai dan Sungai Lematang. Daerah perbukitan terdapat pada sisi barat *site* penambangan MTBS dengan elevasi 282 meter di atas permukaan laut. Daerah tersebut termasuk ke dalam perbukitan Bukit Barisan sehingga pada daerah tersebut dapat dijumpai berbagai struktur geologi sederhana.

a. Lokasi Penelitian

Muara Tiga Besar adalah salah satu Izin Usaha Pertambangan (IUP) yang dimiliki oleh PT. Bukit Asam (Persero), Tbk. yang terletak di Kecamatan Merapi Timur, Kabupaten Lahat yang dijadikan sebagai lokasi penelitian. IUP Muara Tiga Besar dibagi menjadi 2 yaitu: Muara Tiga Besar Utara (MTBU) dan Muara Tiga Besar Selatan (MTBS) dengan masing-masing luas lahan adalah 121.15 Ha dan 84.43 Ha. *Site* penambangan MTBS merupakan daerah yang secara khusus menjadi lokasi penelitian. Lokasi ini berjarak 8 Km dari kantor pusat PT. Bukit Asam (Persero), Tbk. apabila dilihat melalui foto udara letak *site* penambangan MTBS ini terletak di sebelah barat IUP Tambang Air Laya seperti berikut.

Gambar 3. Lokasi Penelitian di PT. Bukit Asam (Persero), Tbk. Tanjung Enim Sumber : Diklat PT.Bukit Asam(Persero), Tbk

3. Geologi dan Stratigrafi

a. Stratigrafi Muara Tiga Besar

Proses intrusi batuan beku Andesit yang lebih dekat ke Air Laya tidak berpengaruh kuat terhadap pembentukan pola struktur tambang Muara Tiga Besar (MTB). Litologi yang dijumpai di daerah penambangan Muara Tiga Besar berada di formasi Muara Enim. Di antara lapisan batubara terdapat lapisan batuan atau sering disebut dengan istilah lapisan antara (*interburden*). Ketebalan lapisan keseluruhan sekitar 30 meter.

Litologi batuan yang ada di daerah Muara Tiga Besar Selatan adalah sebagai berikut

1) Lapisan Tanah Penutup (*overburden*)

Overburden ini mempunyai ketebalan berkisar antara 25-110 meter, terdiri dari tanah buangan lama, batu lempung bentonitan, pasir, gravel, dan endapan lumpur.

2) Lapisan Batubara A₁

Umumnya lapisan ini dicirikan oleh adanya material pengotor berupa tiga pita lempung putih (*Clay Band*), ketebalan lapisan ini berkisar antara 6,5-10 meter.

3) Lapisan *Interburden* A₁–A₂

Terdiri dari batu lempung dan batu pasir tufaan dengan ketebalan berkisar antara 0,5-3,0 meter.

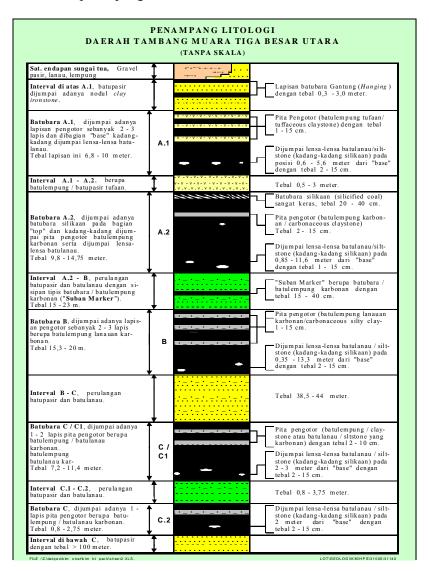
4) Lapisan Batubara A₂

Lapisan ini dicirikan oleh adanya lapisan siling di bagian atas dan ketebalannya berkisar 9,8-14,75 meter.

5) Lapisan Interburden A₂–B

Lapisan ini terdiri dari batu lanau, lempung dan batupasir, yang dikenal dengan nama *Suban Marker Seam*. Ketebalan lapisan ini 15-23 meter.

6) Lapisan Batubara B


Biasanya tedapat dua sampai tiga lapisan pengotor yaitu lapisan lempung. Ketebalan lapisan ini berkisar 15,3-20 meter.

7) Lapisan Interburden B-C

Lapisan ini terdiri dari batu pasir, batu lanau lempungan dan ketebalannya berkisar 38,5-44 meter.

8) Lapisan Batubara C

Lapisan ini merupakan lapisan tunggal dan umumnya tidak memiliki lapisan pengotor. Ketebalan berkisar 7,2-11,4 meter.

Gambar 4. Penampang Litologi Muara Tiga Besar Sumber: Eksplorasi Rinci PT. BukitAsam Tanjung En

b. Geologi

Lapisan batubara di daerah IUP PT. Bukit Asam (Persero) Tbk. Unit Penambangan Tanjung Enim menempati tepi barat bagian dari Cekungan Sumatera Selatan. Cekungan ini merupakan bagian dari Cekungan Sumatera Tengah dan Selatan (Coster, 1974 dan Harsa, 1975). Lapisan batubara pada daerah ini tersingkap dalam sepuluh lapisan batubara yang terdiri dari lapisan tua sampai muda, yakni Lapisan Petai, Lapisan Suban, Lapisan Mangus dan tujuh lapisan gantung (hanging seam).

Daerah penambangan PT. Bukit Asam (Persero), Tbk. termasuk dalam zona fisiografis cekungan Sumatera Selatan dan merupakan bagian dari *antiklinorium* Muara Enim dari Cekungan Sumatera Selatan. Lithologi utama yang dijumpai adalah Formasi Muara Enim sebagai pembawa batubara yang didominasi batuan lempung lanau dengan umur *mio-pliosen*.

Struktur geologi yang berkembang adalah antiklin yang membentuk kubah, sesar normal, sesar-sesar minor dengan pola radial, dan sesar yang tidak menerus sampai bagian bawah dari lapisan batuan yang ada. Hal ini terjadi sebagai akibat dari intrusi andesit di daerah cadangan, adapun selain intrusi batuan beku andesit, struktur geologi pada Tambang Air Laya juga dipengaruhi adanya gaya tektonik pada zaman pliosen dengan arah utama utara-selatan.

Geologi regional daerah PT. Bukit Asam (Persero), Tbk. Termasuk ke dalam Sub Cekungan Palembang yang merupakan bagian dari Cekungan Sumatera Selatan dan terbentuk pada zaman tersier. Sub Cekungan Sumatera Selatan yang diendapkan selama zaman kenozoikum terdapat urutan litologi yang terdiri dalam 2 (dua) kelompok, yaitu Kelompok Telisa dan Kelompok Palembang. Kelompok Telisa terdiri dari Formasi Lahat, Formasi Talang Akar, Formasi Baturaja dan Formasi Gumai. Kelompok Palembang terdiri dari Formasi Air Benakat, Formasi Muara Enim dan Formasi Kasai.

Endapan Tersier pada Cekungan Sumatera Selatan dari yang tua sampai dengan yang muda dapat dipisahkan menjadi beberapa formasi, yaitu antara lain:

1) Formasi Muara Enim

Merupakan indikasi yang mengandung batubara (*coal measure*) dicirikan dengan adanya batu lempung, batu lanau dan batu pasir yang dominan. Di daerah Air Laya, Formasi Muara Enim tertinggi oleh endapan Sungai Tua secara tidak selaras. Endapan sungai—sungai yang berumur kuarter ini belum mengalami pemadatan secara sempurna. Formasi ini berumur Miosen Atas sampai Pliosen Bawah dan diendapkan pad lingkungan *delta plain*. Formasi ini dibagi dalam empat sub formasi yaitu Mangus 1, Mangus 2, Mangus 3 dan Mangus 4.

2) Formasi Kasai

Formasi ini dicirikan oleh tufa yang berwarna putih, seperti yang tersingkap di daerah Suban maupun Klawas. Terdiri dari *interbed tuff*, batu pasir tufaan, batu lanau tufaan, batu lempeng tufaan dan batubara tipis. Lingkungan pengendapannya dari darat sampai transisi dengan ketebalan 500–1000 meter.

3) Formasi Talang Akar

Formasi ini terdiri dari anggota *gritsand* (grm) dan anggota transisi lokasi tipenya di Sumur Limau kurang lebih barat daya Prabumulih dengan nama asal "Talang Akar *Stage*". Anggota *gritsand* dari batu pasir kasar hingga sangat kasar dengan interkalasi serpih dan lanau yang diendapkan di lingkungan fluviatil hingga delta. Anggota ini diendapkan tidak selaras di atas formasi lahat selama oligoasen dalam ketebalan 550 meter.

4) Formasi Baturaja

Formasi ini terdiri dari batu gamping terumbu dan batu gamping detritus, ke arah cekungan berubah fasies menjadi serpih, napal dengan sisipan tipis batu gamping dari formasi gumai. Formasi terletak tidak selaras di atas batuan pra tersier. Ketebalan formasi ini pada daerah paparan adalah 60–75 meter, tetapi apabila terletak di atas batuan dasar, variasinya akan lebih besar antara 60–120 meter, bahkan pada singkapan bukit Gerbah mencapai 520 meter. Formasi ini berumur miosen awal.

5) Formasi Gumai

Puncak Transgesi pada cekungan Sumatera Selatan dicapai pada waktu pengendapan Formasi Gumai sehingga formasi ini mempunyai penyebaran yang sangat luas pada cekungan Sumatera Selatan. Formasi ini diendapkan selaras di atas Formasi Baturaja dan anggota transisi foraminifera dengan sisipan batu pasir gampingan pada bagian bawah dan sisipan batu gamping pada bagian tengah dan atasnya. Ketebalan formasi ini mencapai 200–500 meter.

6) Formasi Air Benakat

Litologi satuan ini adalah serpih gampingan yang kaya akan foraminifera di bagian bawahnya, makin ke atas dijumpai batu pasir yang mengandung gloukonit. Pada puncak batuan ini pasirnya meningkat, kadang dijumpai sisipan tipis batubara atau sisa—sisa tumbuhan. Fomasi ini diendapkan pada lingkungan neritik yang berangsur—angsur menjadi laut dangkal dan prodelta. Diendapkan selaras di atas Formasi Gumai pada miosen tengah hingga miosen akhir dengan ketebalan kurang dari 60 meter.

7) Formasi Lahat

Formasi Lahat diendapkan tidak selaras di atas batuan Pra-Tersier pada lingkungan darat. Formasi ini berumur Oligosen Bawah, tersusun oleh *tuff* breksi, lempung tufaan, breksi dan konglomerat. Pada tempat yang lebih dalam, fasiesnya berubah menjadi serpih, serpih tuffan, batu lanau dan batu pasir dengan sisipan batubara. Ketebalan formasi ini berkisar antara 0 sampai 300 meter.

4. Iklim dan Curah Hujan

Pada lokasi penambangan PT. Bukit Asam (Persero),Tbk. Unit Penambangan Tanjung Enim (UPTE) memiliki iklim tropis dengan temperatur rata-rata 28°C, temperatur minimum pada daerah ini adalah 20°C dan maksimum 34°. Kelembaban udara rata-rata berkisar 57 hingga 85% dengan kelembapan maksimum hingga 98% yang terjadi pada pagi hari dan kelembaban minimum berkisar 35% terjadi pada siang hari. Dengan iklim tropis, maka musim hujan terjadi pada bulan November–April dan musim kemarau terjadi pada bulan Mei–Oktober.

PT. Bukit Asam (Persero), Tbk. memiliki daerah stasiun pengamatan hujan sendiri untuk di daerah operasional tambang untuk menjadi acuan data curah hujan yang digunakan. Data tersebut dapat dilihat pada.

Tabel 1. Data Curah Hujan *Site* Penambangan MTB PT. Bukit Asam (Persero), Tbk. Tahun 2014.

Tahun	Jan	Peb	Mar	Apr	Mei	Jun	Jul	Agt	Sep	Okt	Nop	Des	Jumlah
2010	474	614	364	329	382	102	78	249	236	289	340	131	3588
2011	240	207	202	342	280	213	69	21	50	161	414	329	2526
2012	200	409	150	157	175	94	82	82	94	187	263	636	2529
2013	471	356	504	339	706	99	49	152	222	201	289	458	3846
2014	370	508	242	184	211	127	176	187	10	86,7	301,3	388,3	2791,3
Rata ²	351	418,8	292,4	270,2	350,8	127	90,8	138,2	122,4	184,94	321,46	388,46	3056,06
Min	200	207	150	157	175	94	49	21	10	86,7	263	131	2526
Max	474	614	504	342	382	213	176	249	236	289	414	388,3	3588

Sumber: Perencanaan Sipil dan Hidrologi PT. Bukit Asam (Persero), Tbk

5. Cadangan dan Kualitas Batubara

Jumlah cadangan batubara yang terdapat di lokasi Kuasa Pertambangan PT. Bukit Asam (Persero),Tbk. Unit Pertambangan Tanjung Enim adalah sebesar 3.126,94 juta ton untuk cadangan terukur dan 1.422,21 juta ton untuk cadangan terunjuk dan 3.350 juta ton untuk cadangan tereka. Untuk *site* penambangan Muara Tiga Besar Selatan (MTBS) memiliki cadangan batubara sebesar 144.979,796 ton untuk cadangan terukur dan 2.867.908 ton untuk cadangan terunjuk (Satuan Kerja PT. Bukit Asam (Persero),Tbk, 2014)

Menurut M. S. Krishnan dalam Yoda Pangayona (2006: Hal 18) Klasifikasi kualitas batubara bertujuuan untuk mengelompokkan batubara berdasarkan aturan yang ditetapkan. Hal ini berguna untuk membedakan kualitas batubara berdasarkan parameter yang dijadikan pembanding. Dua parameter yang digunakan untuk mengklasifikasikan batubara menurut *rank*, yaitu *fixed carbon* (*dmmf*) untuk batubara *rank* rendah. Pengklasifikasian batubara berdasarkan kandungan fixed *carbon*.

Menurut Muchjidin dalam Yoda Pangayona (2006: Hal 18) Klasifikasi kualitas batubara yang dilakukan oleh PT. Bukit Asam (Persero), Tbk. terbagi menjadi 2 yaitu berdasarkan *Mine Brand* dan *Market Brand*. Perbedaan klasifikasi batubara ini terletak dari informasi yang terdapat di dalam batubara yang telah ditambang. Informasi batubara dapat berupa *calotic value, total moisture, inherrent moisture, total ash, volatile matter, fixed carbon* dan *total sulphure* (2006).

Brand merupakan batubara hasil dari penambangan yang dibawa menuju temporary stockpile. Kode yang digunakan untuk melambangkan batubara Mine Brand adalah TE. Berikut klasifikasi batubara Mine Brand

(Tabel 2.3) yang dikeluarkan oleh PT. Bukit Asam (Persero), Tbk. (Muchjidin, 2006).

Batubara *Market Brand* adalah batubara yang telah mengalami preparasi sesuai dengan permintaan konsumen. Batubara *Market Brand* memiliki kode BA. Preparasi dimulai dari penyesuaian ukuran butir, *caloric value*, *total moisture*, dan *total ash. Caloric value* batubara yang diminta oleh konsumen didapatkan melalui proses *blending*. Batubara *Market Brand* merupakan batubara siap dipasarkan dengan memperhatikan faktor-faktor berikut ini: *caloric value*, *total moisture*, *inherrent moisture*, *total ash*, *total sulphure*, *volatile matter* dan *fixed carbon*. Klasifikasi batubara *Market Brand* dapat dilihat pada.

Tabel 2. Klasifikasi Batubara Berdasarkan spesifikasi *Mine Brand PT*. Bukit Asam (Persero), Tbk.

MINE BRAND	CV (Kcal/Kg,adb)	TS (%adb)			
TE 55 Minus	Maksimal 5200	0,370 - 1,01			
TE 55	5.201-5.600	0,370 - 1,01			
TE 59	5.601-6.000	0.230 - 1,10			
TE 63	6.001-6.400	0.280 - 1,87			
TE 67	6.401-6.800	0,300 - 0,92			
TE 70	6.800-7.200	0,450 - 1,25			
TE 73 LS	7.200-7.500	Maksimal 0,7			
TE 73 HS	7.200-7.500	0,701 - 1,25			
TE 76	Minimal 7.501	0,55 - 0,21			

Sumber: SK Direksi PT. Bukit Asam (Persero), Tbk. Tanjung Enim Nomor 277/KEP/Int-01000/PR.08/2012, 2012.

Tabel 3 Klasifikasi Batubara Berdasarkan spesifikasi *Market Brand* PT. Bukit Asam (Persero), Tbk.

	it i built (i tibel o)	, _ ~					
MARKET	CV	TM	I I	M	Ash	VM	FC TS
BRAND	(Kcal/Kg, adb)	(%, 8	ar) (%,	,adb) (%	,adb) (%,adb) (%,a	adb) (%,adb)
BA 55	5500	30	15	8.0	39	38	0.80
BA 59	5900	28	14	7	39	40	0.80
BA 61	6100	28	12	7	41	40	0.80
BA 63	6300	21	10	6.0	41	43	0.80
BA 67	6700	16	8	6.0	42	44	0.80
BA 70 LS	7000	14	7	4	42	47	0.70
BA 70 HS	7000	14	7	4	42	47	1.20
BA 76	7600	5	2	8	14	78	1.20

Sumber: SK Direksi PT. Bukit Asam (Persero), Tbk. Tanjung Enim Nomor 277/KEP/Int-01000/PR.08/2012, 2012.

BAB V HASIL PENELITIAN DAN PEMBAHASAN

A. Kegiatan Produksi Batu Bara

Kegiatan penambangan di PT. Bukit Asam (Persero), Tbk. pada *Tambang* MTBS menggunakan metode *shovel and truck*. Dengan memakai kombinasi alat *excavator* dan *dump truck*. Kegiatan penambangan Batubara pada awalnya di lakukam *Ripping* agar *Excavator* dapat mudah untuk *loading*, atau pengisian ke *dump truck* selanjutnya diangkut ke *dump hopper* atau *temporari stock*

1. Ripping Batubara

ripping merupakan kegiatan memberaikan batubara dari kondisi insitu menjadi kondisi loos dengan menggunakan buldozer ripping dan dapat juga membatu excavator untuk loading batubara. Gambar buldozer rippinng batubara pada site Tambang MTBS di PT. Bukit Asam (Persero), Tbk.

Gambar 17. Ripping Batubara

2. Loading Batubara

Bahan galian yang telah terbuka dilakukannya *ripping* agar mudah muntuk memuat bahan galain ke dalam *Dump Truck* dengan menggunakan *Excavator*. Untuk memenuhi kapasitas *dump truck* maka *excavator* harus melakukannya beberapa kali. Berdasarkan kapasitas *bucket* dari *excavator* dan tipe *dump truck* yang digunakan di tambang. Contohnya di tambang MTBS menggunakan *excavator* PC 400 dan *Dump Truck* Hino 500, membutuhkan 8 kali pengisian ke dalam *dump truck* yang kapasitasnya 30 ton.

Gambar 18. Loading Batubara.

3. Pengangkutan Batubara

Setelah bahan galian tersebut berada pada *dump truck* maka akan diangkut ke daerah *Dump Hopper*. Apabila terjadinya kesalahan pada *dump hopper* maka di *dumping* pada pada *stockpile*, Pengangkutan dilakukan dengan jarak dengan dua jarak. Gambar 3 pengangkutan Batubara Tambang MTBS di PT. Bukit Asam (Persero) Tbk.

Gambar 19. Pengangkutan Batubara.

4. Dumping Batubara

Bahan galian yang telah ditumpahkan pada *Dump Hopper* langsung masuk kedalam *Belt Conveyor*.

Gambar *dumping* Batubara Tambang MTBS di PT. Bukit Asam (Persro) Tbk.

Gambar 20. Dumping Batubara.

B. Produktivitas Alat

Berdasarkan data hasil dari penelitian dilapangan beserta data yang didapat dari berbagai litelatur, maka produktivitas dari berbagai alat berat serta berbagai kombinasi antara alat gali dengan alat angkut guna pengangkutan *overburden* dari *front* penambangan menuju ke *back filling* area dapat dihitung menggunakan formulasi yang berikut ini :

1. Produktivitas Excavator

$$Q = q x \frac{3600}{Cm} x E$$
; $q = q1 x K x$ swell factor

Dimana:

Q = Produktifitas Per Jam (bcm/jam)

q = Kapasitas Efektif (m3)

 $q_1 = Kapasitas Bucket (m3)$

K = Bucket Fill Factor

Cm = Cycle Time (Detik)

E = Efisiensi Kerja

Swell factor

Density Batubara

2. Produktivitas Dump Truck

$$P = C \times \frac{60}{Cmt}$$
x density

Dimana:

 $C = Dump \ Capacity$ $Cmt = Cycle \ Time$

Density

3. *Match Faktor* (Keserasian Kerja Alat Berat)

$$MF = \frac{n \ x \ CTm \ x \ Na}{CTa \ x \ Nm}$$

Keterangan

MF = Faktor Keselarasan (*match factor*)

n = Banyak Pengisian Bucket

CTm = Waktu Edar excavator

Na = Jumlah alat angkut

Cta = Waktu Edar Alat Angkut

4. Ketersedian Mekanis (Mechanical Avaibility)

$$M.A. = \frac{w}{w + R} \times 100\%$$

$$P.A. = \frac{w+s}{w+R+s} \times 100\%$$

$$U.A. = \frac{w}{w + S} \times 100\%$$

$$E.U. = \frac{w}{w + R + S} \times 100\%$$

Keterangan:

W = "working hours" atau jumlah jam kerja alat

R = "repair hours" atau jumlah jam untuk perbaikan.

S = "standbay hours" atau jumlah jam suatu alat yang tidak dapat dipergunakan pada hal alat tersebut tidak rusak dan dalam keadaan siap beroperasi.

5. Produktivitas Bulldozer (Ripping)

$$Q = \frac{w \, x \, p \, x \, D \, x \, 60 \, x \, cf \, x1/2}{\frac{D}{F} + \frac{D}{R} + \, Z} \, x \, density \qquad \dots (4.3)$$

Sumber: Partanto 1996

Keterangan:

Q = Produktivitas Alat (ton / Jam)

W = Kapasitas *Bladean* (Lampiran J)

P = penatration Blade (Lampiran J)

CF = Faktor Koreksi (Lampiran J)

D (d) = Jarak Gusur (Lampiran J)

F = Kecepatan Maju (Lampiran J)

R = Kecepatan Mundur (Lampiran J)

Z = Ketetapan Waktu (Lampiran J)

 $CT = Cycle\ Time\ (J$

C. Rencana Produksi Tahun 2015

Tabel. 4
Rencana Produksi Batubara Tahun 2015 per tri Wulan

Triwulan	Produksi (Ton)	Jarak (KM)
Triwulan 1	260.000	4,53
Triwulan 2	818.000	4,67
Triwulan 3	1.134.000	4,77
Triwulan 4	908.000	4,93

1. Kebutuhan Alat Pembatuan

a. Excavator PC 400

$$Q = q x \frac{3600}{Cm} x E$$
; $q = q1 x K x$ swell factor

Dimana:

Q = Produktifitas Per Jam (bcm/jam)

q = Kapasitas Efektif (m3) = 1.93 m^3

 q_1 = Kapasitas Bucket (m3) = 3,2 m³

K = Bucket Fill Factor = 0.9

Cm = Cycle Time (Detik) = 21,07 Detik

E = Efisiensi Kerja = 0.83

Swell factor = 0.67

Density Batubara = $1,26 \text{ ton/m}^3$

Maka,

Q= 1,93 m³ x
$$\frac{3600 \text{ detik}}{21,07 \text{ detik}}$$
 x 0,83 x 1,26 ton/m³ ; q = 3,2 m³ x 0,9 x 0,67

= 344,86 ton/jam

Dengan asumsi jam jalan efektif untuk pembatuan jam, maka produksi per unit PC 400 :

1) Produksi Pada Triwulan Pertama

Produksi/Unit: Produktifitas x Jam Jalan Efektif Alat

: 344,86 ton/jam x 1230 jam

: 424.177,8 ton/triwulan

2) Produksi Pada Triwulan kedua

Produksi/Unit: Produktifitas x Jam Jalan Efektif Alat

: 344,86 ton/jam x 1415 jam

: 487.976,9 ton/triwulan

3) Produksi Pada Triwulan ketiga

Produksi/Unit: Produktifitas x Jam Jalan Efektif Alat

: 344,86 ton/jam x 1384 jam

: 477.286,24 ton/triwulan

4) Produksi Pada Triwulan keempat

Produksi/Unit: Produktifitas x Jam Jalan Efektif Alat

: 344,86 ton/jam x 1399 jam

: 482.631,57 ton/triwulan

5) Excavator PC 800

$$Q = q x \frac{3600}{Cm} x E x density ; q = q1 x K x swell factor$$

Dimana:

Q = Produktifitas Per Jam (ton/jam)

q = Kapasitas Efektif (m3) = 2.71 m^3

 q_1 = Kapasitas Bucket (m3) = 4,5 m³

K = Bucket Fill Factor = 0.9

Cm = Cycle Time (Detik) = 22,01 detik

E = Efisiensi Kerja = 0.83

Swell factor = 0,67

Density Batubara = $1,26 \text{ ton/m}^3$

Maka,

Q= 2,71 m³
$$x \frac{3600 \text{ detik}}{22,01 \text{ detik}} \times 0,83 \times 1,26 \text{ ton/m}^3$$
; q = 4,5 m³ $\times 0,9 \times 0,67$ = 463,55 ton/jam

Dengan asumsi jam jalan efektif untuk pembatuan jam, maka produksi per unit PC 800 :

1) Produksi pada triwulan pertama

Produksi/Unit: Produktifitas x Jam Jalan Efektif Alat

: 463,55 ton/jam x 1230 jam

: 570.166,5 ton/triwulan

2) Produksi pada triwulan kedua

Produksi/Unit: Produktifitas x Jam Jalan Efektif Alat

: 463,55 ton/jam x 1415 jam

: 655.09923,25 ton/triwulan

3) Produksi pada triwulan ketiga

Produksi/Unit: Produktifitas x Jam Jalan Efektif Alat

: 463,55 ton/jam x 1384 jam

: 641.553,2 ton/triwulan

4) Produksi pada triwulan keempat

Produksi/Unit: Produktifitas x Jam Jalan Efektif Alat

: 463,55 ton/jam x 1399 jam

: 648.506,45 ton/triwulan

b. Dumptruck Hino P 30 dengan menggunakan Excavator PC 400 pada triwulan pertama

Perhitungan produktifitas diasumsikan sama dengan Dumptruck Komatsu. Dengan jarak angkut 4,53 Km produktifitas sebagai berikut :

$$P = C \times \frac{60}{Cmt}$$
x density

Dimana:

$$C = 30 \text{ m}^3$$

Cmt
$$= 26.92$$
 menit

Density =
$$1,26 \text{ gr ton/m}^3$$

Maka,

$$P = 30 \, m^3 \, x \, \frac{60 \, menit}{26,92 \, menit} \, x \, 1,26 \, tom/m^3$$

P = 84,24 ton/jam

Dengan asumsi jam jalan efektif jam, maka produksi per unit DT:

Produksi/Unit: Produktifitas x Jam Jalan Efektif Alat

: 84,24 Ton/Jam x 1230 jam

: 1003.9619,63 ton/triwulan

c. Dumptruck Hino P 30 dengan menggunakan Excavator PC 400 pada triwulan kedua

Perhitungan produktifitas diasumsikan sama dengan Dumptruck Komatsu. Dengan jarak angkut 4,686 Km produktifitas sebagai berikut :

$$P = C \times \frac{60}{Cmt}$$
x density

Dimana:

$$C = 30 \text{ m}^3$$

Cmt = 27,169 menit (Lampiran D-2)

Density =
$$1,26 \text{ ton/m}^3$$

Maka,

$$P = 30 \text{ m}^3 x \frac{60 \text{ menit}}{27,169 \text{ menit}} x 1,26 \text{ ton/m}^3$$

P = 83,46 ton/jam

Dengan asumsi jam jalan efektif jam, maka produksi per unit DT:

Produksi/Unit: Produktifitas x Jam Jalan Efektif Alat

: 83,46 Ton/Jam x 1415 jam

: 118.095,9 ton/triwulan

d. Dumptruck Hino P 30 dengan menggunakan *Excavator* PC 400 pada triwulan ketiga

Perhitungan produktifitas diasumsikan sama dengan Dumptruck Komatsu. Dengan jarak angkut 4,767 Km produktifitas sebagai berikut :

$$P = C \times \frac{60}{Cmt}$$
x density

Dimana:

$$C = 30 \text{ m}^3$$

Cmt = 27,635 menit (Lampiran D-2)

Density = $1,26 \text{ ton/m}^3$

Maka,

$$P = 30 \ m^3 x \frac{60 \ menit}{27,635 \ menit} \ x \ 1,26ton/m^3$$

P = 82,06 ton/jam

Dengan asumsi jam jalan efektif jam, maka produksi per unit DT:

Produksi/Unit: Produktifitas x Jam Jalan Efektif Alat

: 82,06 Ton/Jam x 1384 jam

: 113.571,04 ton/triwulan

e. Dumptruck Hino P 30 dengan menggunakan *Excavator* PC 400 pada triwulan keemapat

Perhitungan produktifitas diasumsikan sama dengan Dumptruck Komatsu. Dengan jarak angkut 4,926 Km produktifitas sebagai berikut :

$$P = C \times \frac{60}{Cmt}$$
x density

Dimana:

 $C = 30 \text{ m}^3$

Cmt = 28,585 menit (Lampiran D-2)

Density = $1,26 \text{ ton/m}^3$

Maka,

$$P = 30 \ m^3 x \frac{60 \ menit}{28,585 \ menit} \ x \ 1,26ton/m^3$$

P = 79,34 ton/jam

Dengan asumsi jam jalan efektif jam, maka produksi per unit DT:

Produksi/Unit: Produktifitas x Jam Jalan Efektif Alat

: 79,34 Ton/Jam x 1399 jam

: 110.996,66 ton/triwulan

f. Dumptruck Hino P 30 dengan menggunakan *Excavator* PC 800 pada triwulan pertama.

Perhitungan produktifitas diasumsikan sama dengan Dumptruck Komatsu. Dengan jarak angkut 4,686 Km produktifitas sebagai berikut :

$$P = C \times \frac{60}{Cmt}$$
x density

Dimana:

$$C = 30 \text{ m}^3$$

Cmt
$$= 24,79$$
 menit

Density =
$$1,26 \text{ ton/m}^3$$

Maka,

$$P = 30 \text{ m}^3 x \frac{60 \text{ menit}}{24.79 \text{ menit}} \times 1,26 \text{ ton/m}^3$$

P = 91,5 ton/jam

Dengan asumsi jam jalan efektif jam, maka produksi per unit DT:

Produksi/Unit: Produktifitas x Jam Jalan Efektif Alat

: 91,5 Ton/Jam x 1415 jam

: 129.472,5 ton/triwulan

g. Dumptruck Hino P 30 dengan menggunakan *Excavator* PC 800 pada triwulan ketiga

Perhitungan produktifitas diasumsikan sama dengan Dumptruck Komatsu. Dengan jarak angkut 4,65 Km produktifitas sebagai berikut :

$$P = C \times \frac{60}{Cmt}$$
 x density

Dimana:

$$C = 30 \text{ m}^3$$

Cmt = 25,48 menit (Lampiran C-2)

Density = $1,26 \text{ ton/m}^3$

Maka,

$$P = 30 \ m^3 x \frac{60 \ menit}{26,044 \ menit} \ x \ 1,26 \ ton/m^3$$

P = 87,05 ton/jam

Dengan asumsi jam jalan efektif jam, maka produksi per unit DT:

Produksi/Unit: Produktifitas x Jam Jalan Efektif Alat

: 87,05 Ton/Jam x 1384 jam

: 120.477,2 ton/triwulan

- h. Perhitungan *match factor* alat gali muat dan alat angkut untuk batubara dengan menggunakan *Excavator* PC 400.
 - 1) Triwulan pertama.

Diketahui:

MF = Faktor Keselarasan (*match factor*)

n = Banyak Pengisian Bucket = 10 kali

CTm = Waktu Edar excavator =21,07 detik

Na = Jumlah alat angkut = 7 unit

Cta = Waktu Edar Alat Angkut = 26,92 menit

$$MF = \frac{n \ x \ CTm \ x \ Na}{CTa \ x \ Nm}$$

$$1 = \frac{10 \times 21,07 \ detik \times Na}{26,92 \ menit \times 1}$$

$$1 = \frac{210,7 \ detik \ x \ Na}{26,92 \ menit}$$

$$1 = \frac{210,7 \ detik \ x \ Na}{1615,2 \ detik}$$

$$Na = \frac{1615,2}{210,7 \ detik}$$

Na = 7,7 Unit

2) Triwulan kedua.

Diketahui:

MF = Faktor Keselarasan (*match factor*)

n = Banyak Pengisian Bucket = 10 kali

CTm = Waktu Edar excavator =21,07 detik

Na = Jumlah alat angkut = 7 unit

Cta = Waktu Edar Alat Angkut = 27,169 menit

$$MF = \frac{n \ x \ CTm \ x \ Na}{CTa \ x \ Nm}$$

$$1 = \frac{10 \times 21,07 \ detik \times Na}{27,169 \ menit \times 1}$$

$$1 = \frac{210,7 \ detik \times Na}{27,169 \ menit}$$

$$1 = \frac{210,7 \ detik \times Na}{1630,14 \ detik}$$

$$Na = \frac{1630,14}{210,7 \ detik}$$

Na = 7,74 unit

3) Triwulan ketiga.

Diketahui:

MF = Faktor Keselarasan (*match factor*)

n = Banyak Pengisian Bucket = 10 kali

$$MF = \frac{n \ x \ CTm \ x \ Na}{CTa \ x \ Nm}$$

$$1 = \frac{10 \ x \ 21,07 \ detik \ x \ Na}{27,635 \ menit \ x \ 1}$$

$$1 = \frac{210,7 \ detik \ x \ Na}{27,636 \ menit}$$

$$1 = \frac{210,7 \ detik \ x \ Na}{1658,1 \ detik}$$

$$Na = \frac{1658,1 \ detik}{210,7 \ detik}$$

Na = 7.87 unit.

4) Triwulan keempat.

Diketahui:

Na =
$$Jumlah alat angkut = 7 unit$$

$$MF = \frac{n \times CTm \times Na}{CTa \times Nm}$$

$$1 = \frac{10 \times 21,07 \ detik \times Na}{28,585 \ menit \times 1}$$

$$1 = \frac{210,7 \ detik}{28,585 \ menit}$$

$$1 = \frac{210,7 \ detik}{1655,1 \ detik}$$

$$1 = \frac{1655,1 \ detik}{210,7 \ menit}$$

Na = 7,85 unit

Berdasarkan data yang didapat lapangan untuk mencapai MF = 1 dari triwulan pertama sampai triwulan keempat seharusnya menggunakan 1 excavator PC 400 dan 7,85 unit dump truck, perusahaan menggunakan 7 unit dump truck karena lokasi loading batubara sempit, untuk serasinya alat kita harus melakukan supaya cycle time alat gali muat labih diperlambat.

- i. Perhitungan *match factor* alat gali muat dan alat angkut untuk batubara dengan menggunakan *Excavator* PC 800.
 - 1) Triwulan pertama.

Diketahui:

MF = Faktor Keselarasan (*match factor*)

n = Banyak Pengisian Bucket = 8 kali

CTm = Waktu Edar excavator =22,01 detik

Na = Jumlah alat angkut = 8 unit

Cta = Waktu Edar Alat Angkut = 24,79 menit

$$MF = \frac{n \times CTm \times Na}{CTa \times Nm}$$

$$1 = \frac{8 \times 22,01 \text{ detik } \times Na}{24.79 \text{ menit } \times 1}$$

$$1 = \frac{176,08 \ detik}{24,79 \ menit}$$

$$1 = \frac{176,08 \, detik}{1487,5 \, detik}$$

$$1 = \frac{1487,5 \ detik}{176,08 \ detik}$$

Na = 8,5 unit.

2) Triwulan ketiga.

Diketahui:

MF = Faktor Keselarasan (*match factor*)

n = Banyak Pengisian Bucket = 8 kali

CTm = Waktu Edar excavator =22,01 detik

Na = Jumlah alat angkut = 8 unit

Cta = Waktu Edar Alat Angkut = 26,044 menit

$$MF = \frac{n \times CTm \times Na}{CTa \times Nm}$$

$$1 = \frac{8 \times 22,01 \text{ detik } \times Na}{26,044 \text{ menit } \times 1}$$

$$1 = \frac{176,08 \ detik}{26,044 \ menit}$$

$$1 = \frac{176,08 \, detik}{1562,64 detik}$$

$$1 = \frac{1562,64 \ detik}{176,08 \ detik}$$

Na = 8,87 unit

j. Produktivitas Buldozer

$$Q = \frac{20x\frac{1}{2}x0,574x1,148 x60x0,68}{\frac{20}{53.83} + \frac{20}{75.5} + 0,05}$$

$$Q = 51,0038/jam x1,26 x 0,9$$

$$Q = 590,82 \text{ ton/ jam}$$

k. Ketersediaan Mekanis

Excavator PC 400

W = jumlah jam kerja alat (259,21 jam)

R = jumlah jam untuk perbaikan (14,11 jam)

S = jumlah jam suatu alat yang tidak dapat dipergunakan (397,80 jam)

$$M.A. = \frac{259,21}{259,21 + 14,11} \times 100\%$$
$$= \frac{259,21}{273,32} \times 100\%$$
$$= 94,84\%$$

$$P.A. = \frac{259,21 + 397,80}{259,21 + 397,80 + 14,11} \times 100\%$$
$$= \frac{657,01}{671,12} \times 100\%$$
$$= 97,9\%$$

$$A. U. = \frac{259,21}{259,21 + 397,80} \times 100\%$$
$$= \frac{259,21}{657,01} \times 100\%$$
$$= 39,45\%$$

$$E.U. = \frac{259,21}{259,21 + 397,80 + 14,11} \times 100\%$$

$$=\frac{259,21}{671,12} \times 100\%$$

$$= 38,62\%$$

1. Excavator PC 800

W = jumlah jam kerja alat (298,25 jam)

R = jumlah jam untuk perbaikan (33,35 jam)

S = jumlah jam suatu alat yang tidak dapat dipergunakan (337,62 jam)

$$M.A. = \frac{298,25}{298,25 + 33,35} \times 100\%$$
$$= \frac{298,25}{331,78} \times 100\%$$

$$P.A. = \frac{298,25 + 337,62}{298,25 + 337,62 + 33,35} \times 100\%$$

$$=\frac{635,87}{669,4} \times 100\%$$

$$A.U. = \frac{298,25}{337,62 + 298,25} \times 100\%$$
$$= \frac{298,25}{635,87} \times 100\%$$

$$E.U. = \frac{298,25}{298,25 + 33,53 + 337,62} \times 100\%$$
$$= \frac{298,25}{669,4} \times 100\%$$

D. Tabel Perhitungan Biaya Tahun 2015

- Match Factor setelah ditambahkan alat dan jumlah yang digunakan untuk mencapai target.
 - a. Jumlah alat yang digunakan pada Triwulan Pertama

Tabel.5 Jumlah Alat Triwulan Pertama

URAIAN								
JENIS ALAT	J. Alat aktual	JJE	Jam Alat	Produksi/Jam	Produksi	PRODUKSI		
BULLDOZER								
- D 8 R CoaL Ripping	1	1230	441	590	260.190			
EXCAVATOR & DT						260.000		
- EXCAVATOR PC 400 (Ton)	1	1230	755	344,60	260.173			
- Dump Truck Hino	7	1230	755	84,25	445.261			
	TOTAL							

Untuk mencapai target pada triwulan pertama hanya menggunakan 1 alat Excavator dan 7 Dump Truck, jam yang di pakai hanya 755 jam sedangkan buldozer 1 unit dan jam yang terbakai hanya 441 jam.

b. Jumlah alat yang digunakan pada Triwulan kedua

Tabel.6 Jumlah Alat Triwulan Kedua

URAIAN								
JENIS ALAT	J. Alat aktual	JJE	Jam Alat	Produksi/Jam	Produksi	PRODUKSI		
BULLDOZER								
- D 8 R CoaL Ripping	2	1415	694	590	818.920			
EXCAVATOR & DT						818.000		
- EXCAVATOR PC 400 (Ton)	2	1415	1187	344,60	818.080			
- Dump Truck Hino	14	1415	1187	82,92	1.377.965			
	TOTAL		-		818.080			

Untuk mencapai target pada triwulan pertama hanya menggunakan 2 alat Excavator PC 400 dan 14 Dump Truck, jam yang di pakai hanya 1187 jam sedangkan buldozer 2 unit dan jam yang terbakai hanya 694 jam .

c. Jumlah alat yang digunakan pada Triwulan ketiga

Tabel 7 Jumlah Alat Triwulan Ketiga

URAIAN								
JENIS ALAT	J. Alat aktual	JJE	Jam Alat	Produksi/Jam	Produksi	PRODUKSI		
BULLDOZER								
- D 8 R CoaL Ripping	2	1384	961	590	1.133.980			
EXCAVATOR & DT						1.134.000		
- EXCAVATOR PC 800 (Ton)	2	1384	1224	463,55	1.134.770			
- Dump Truck Hino	16	1384	1224	87,05	1.704.787			
	TOTAL				1.134.770			

Untuk mencapai target pada triwulan pertama hanya menggunakan 2 alat Excavator PC 800 dan 16 Dump Truck, jam yang di pakai hanya 1224 jam sedangkan buldozer 2 unit dan jam yang terbakai hanya 961 jam.

d. Jumlah alat yang digunakan pada Triwulan keempat

Tabel 8 Jumalah Alat Triwulan Keempat

URAIAN								
JENIS ALAT	J. Alat aktual	JJE	Jam Alat	oduksi/Ja	Produksi	PRODUKSI		
BULLDOZER								
- D 8 R CoaL Ripping	2	1399	770	590	908.600			
EXCAVATOR & DT						908.000		
- EXCAVATOR PC 400 (Ton)	2	1399	1318	344,6	908.366			
- Dump Truck Hino	14	1399	1318	79,34	1.463.982			
	TOTAL				908.366			

Untuk mencapai target pada triwulan pertama hanya menggunakan 2 alat Excavator PC 400 dan 14 Dump Truck, jam yang di pakai hanya 1318 jam sedangkan buldozer 2 unit dan jam yang terbakai hanya 770 jam .

2. Biaya sewa Alat

Tabel. 9

Biaya Sewa Alat Triwulan Pertama									
Alat	Jumlah Alat	Jam Jalan	Tar	if Dasar	Haraa Dalar	Biaya Sewa			
Alat Jumlah Alat		Jaiii Jaiaii	USD\$	Rupih	Harga Dolai	Pertriwulan			
Buldozer 375 A	1	441	82,6	Rp934.804		Rp 922.220.964			
Excavator 400	1	755	41,8	Rp540.930	14.000	Rp 408.402.150			
Excavator 8 00									
	total								

Tabel. 10

Biaya Sewa Alat Triwulan Kedua										
Alot	Jumlah Alat	Jam Jalan	Taı	if Dasar	Hansa Dalar	Biaya Sewa				
Alat Jumlah Alat		Jaiii Jaiaii	USD\$	Rupih	Harga Dolar	Pertriwulan				
Buldozer 375 A	2	694	82,6	Rp934.804		Rp2.902.591.152				
Excavator 400	2	1187	41,8	Rp540.930	14.000	Rp1.284.167.820				
Excavator 8 00										
	total									

Tabel. 11

Biaya Sewa Alat Triwulan Ketiga									
Alat	Inmloh Alot	umlah Alat Jam Jalan		arif Dasar	Haraa Dalar	Biaya Sewa			
Aiat	Alat Jumlah Alat		USD\$	Rupih	Harga Dolar	Pertriwulan			
Buldozer 375 A	2	961	82,6	Rp 934.804		Rp 4.019.294.088			
Excavator 400	0		0		14.000				
Excavator 800	2	1224	67,3	Rp 1.096.709		Rp 2.684.743.632			
	total								

Tabel. 12

Biaya Sewa Alat Triwulan Keempat									
A lat	Jumlah Alat	Iom Iolon	Tarif Dasar			Harra Dalar	Biaya Sewa		
Alat	Julillan Alat	Jam Jalan	USD\$	Rupih		Harga Dolar	Pertriwulan		
Buldozer 375 A	2	770	82,6	Rp	934.804		Rp 3.220.454.160		
Excavator 400	2	1318	41,8	Rp	540.930	14.000	Rp 1.425.891.480		
Excavator 800	0								
	total								

Tabel. 13

1 400 411 12							
Biaya Sewa Tahun 2015							
Triwulan	Biaya Sewa						
Pertama	Rp 1.330.623.114						
Kedua	Rp 4.186.758.972						
Ketiga	Rp 6.704.037.720						
Keempat	Rp 4.646.345.640						
Total	Rp 16.867.765.446						

3. Biaya Produksi

Tabel. 14

	Biaya Produksi Pertriwulan Tahun 2015									
Triwulan	Produksi	Tarif	Tarif Dasar		II D. 11					
111Wulai1	PTOUUKSI	US \$/ton	Rp/ton	Harga \$	Harga Produksi					
Pertama	260.173	0,366	7.960		Rp 3.404.103.532					
Kedua	818.080	0,372	8.116	14.000	Rp 6.639.540.526					
Ketiga	1.134.770	0,372	8.116	14.000	Rp 9.209.796.566					
Keempat	908.366	0,379	8.240		Rp 7.484.932.544					
	Tot	al		Rp 26.738.373.169						

4. Biaya Total tahun 2015

Tabel. 15

Total Biaya Tahun 2015							
Jenis		Biaya					
Biaya Produksi	Rp	26.738.373.169					
Biaya Sewa Alat	Rp	16.867.765.446					
Total	Rp	43.606.138.615					

5. Biaya *Operaning Cost* a. Triwulan Pertama

Tabel 16

	Tab	el. 16		
OPERATING CO	ST D 375A-5			
Kurs Dollar	Rp 14.000,00			
Fuel	Rp 11.000,00			
Crank Case	Rp 32.813,00			
Oil Transmision	Rp 40.695,00			
Final Drive Oil	Rp 15.500,00			
Hydraulic Control Oil	Rp 48.746,00			
Grease (KG)	Rp 40.744,00			
Item	Jam/Triwulan 1	Penggunaan Harga/Lt		Harga/triwulan
Fuel		65,3 lt/jam	Rp 11.000,00	Rp 316.770.300
Crank Case	1	0,12 lt/jam	Rp 32.813,00	Rp 1.736.464
Oil Transmision	441	0,15 lt/jam	Rp 40.695,00	Rp 2.691.974
Final Drive Oil	441	0,07 lt/jam	Rp 15.500,00	Rp 478.485
Hydraulic Control Oil	1	0,06 lt/jam	Rp 48.746,00	Rp 1.289.819
Grease (KG)	1	0,04	Rp 40.744,00	Rp 718.724
Operator Salary				Rp 8.000.000
	Total (Rup	iah)		Rp 331.685.767
	Total (\$)		23.692

Tabel. 17

Excavator]	PC 400	1 4001. 17			
Kurs Dollar	Rp 14.000,00				
Fuel	Rp 11.000,00				
Crank Case	Rp 32.813,00				
Oil Transmision	Rp 40.695,00				
Final Drive Oil	Rp 15.500,00				
Hydraulic Control Oil	Rp 48.746,00				
Grease (KG)	Rp 40.744,00				
Item	Jam/Triwulan 1	Penggunaan Harga/Lt		Н	arga/triwulan
Fuel		28,9 lt/jam	Rp 11.000,00	Rp	140.193.900
Crank Case		0,08 lt/jam	Rp 32.813,00	Rp	1.157.643
Oil Transmision	755	0,02 lt/jam	Rp 40.695,00	Rp	358.930
Final Drive Oil	/55	0,011 lt/jam	Rp 15.500,00	Rp	75.191
Hydraulic Control Oil		0,05 lt/jam	Rp 48.746,00	Rp	1.074.849
Grease (KG)		0,12 lt/jam	Rp 40.744,00	Rp	2.156.172
Operator Salary	Rp	8.000.000			
	Total (Rup	iah)		Rp	153.016.685
	Total (\$)			10.930

Tabel. 18

Dump Truck	k Hino					
Kurs Dollar	Rp 14.000,00			kecepatan	20,4	km/jam
Fuel	Rp 11.000,00			Handbook	26	liter/jam
Crank Case	Rp 32.813,00				1,27	liter/km
Oil Transmision	Rp 40.695,00					
Final Drive Oil	Rp 15.500,00					
Hydraulic Control Oil	Rp 48.746,00					
Grease (KG)	Rp 40.744,00					
Item	Jam/Triwulan 1	Penggunaan	Harga/Lt	Jumlah Alat	Harga/triwulan	
Fuel		26 lt/jam	Rp 11.000,00		Rp 882.882.000	
Crank Case		0,12 lt/jam	Rp 32.813,00	1	Rp 12.155.248	
Oil Transmision	755	0,05 lt/jam	Rp 40.695,00	7	Rp 6.281.273	
Final Drive Oil	755	0,02 lt/jam	Rp 15.500,00	/	Rp 956.970	
Hydraulic Control Oil		0,1 lt/jam	Rp 48.746,00]	Rp 15.047.890	
Grease (KG)		0,16 lt/jam	Rp 40.744,00		Rp 20.124.276	
Operator Salary					Rp 6.000.000	
	Total (Rup	iah)			Rp 943.447.658	
	Total (\$)			67.389	

b. Triwulan Kedua

Tabel, 19

		Tabel.	19		
OPERATING C	OST D 375A-5				
Kurs Dollar	Rp 14.000,00				
Fuel	Rp 11.000,00				
Crank Case	Rp 32.813,00				
Oil Transmision	Rp 40.695,00				
Final Drive Oil	Rp 15.500,00				
Hydraulic Control Oil	Rp 48.746,00				
Grease (KG)	Rp 40.744,00				
Item	Jam/Triwulan 1	Penggunaan	Harga/Lt	Jumlah Alat	Harga/triwulan
Fuel		65,3 lt/jam	Rp 11.000,00		Rp 997.000.400
Crank Case		0,12 lt/jam	Rp 32.813,00		Rp 5.465.333
Oil Transmision	694	0,15 lt/jam	Rp 40.695,00	2	Rp 8.472.699
Final Drive Oil	094	0,07 lt/jam	Rp 15.500,00	2	Rp 1.505.980
Hydraulic Control Oil]	0,06 lt/jam	Rp 48.746,00		Rp 4.059.567
Grease (KG)		0,04 lt/jam	Rp 40.744,00		Rp 2.262.107
Operator Salary					Rp 8.000.000
	Total (Ru	piah)			Rp 1.026.766.086
	Total (\$)			73.340

Tabel. 20

Excavator	PC 400				
Kurs Dollar	Rp 14.000,00	1			
Fuel	Rp 11.000,00				
Crank Case	Rp 32.813,00				
Oil Transmision	Rp 40.695,00				
Final Drive Oil	Rp 15.500,00				
Hydraulic Control Oil	Rp 48.746,00				
Grease (KG)	Rp 40.744,00				
Item	Jam/Triwulan 1	Penggunaan	Harga/Lt	Jumlah Alat	Harga/triwulan
Fuel		28,9 lt/jam	Rp 11.000,00		Rp 441.245.200
Crank Case	1	0,08 lt/jam	Rp 32.813,00		Rp 3.643.556
Oil Transmision	1187	0,02 lt/jam	Rp 40.695,00	2	Rp 1.129.693
Final Drive Oil	1187	0,011 lt/jam	Rp 15.500,00	2	Rp 236.654
Hydraulic Control Oil	1	0,05 lt/jam	Rp 48.746,00		Rp 3.382.972
Grease (KG)		0,12 lt/jam	Rp 40.744,00		Rp 6.786.321
Operator Salary					Rp 8.000.000
	Total (Ri	ıpiah)	-		Rp 464.424.396
	Total	(\$)			33.173

Tabel. 21

Dump T	ruck					
Kurs Dollar	Rp 14.000,00			Kecepatan	20,56	km/jam
Fuel	Rp 11.000,00			Handbook	26	liter/jam
Crank Case	Rp 32.813,00				1,26	liter/km
Oil Transmision	Rp 40.695,00					
Final Drive Oil	Rp 15.500,00					
Hydraulic Control Oil	Rp 48.746,00					
Grease (KG)	Rp 40.744,00					
Item	Jam/Triwulan 1	Penggunaan	Harga/Lt	Jumlah Alat	Harga/triwulan	
Fuel		26 lt/jam	Rp 11.000,00		Rp 2.778.776.000	
Crank Case	1 [0,12 lt/jam	Rp 32.813,00		Rp 38.257.333	
Oil Transmision	1187	0,05 lt/jam	Rp 40.695,00	14	Rp 19.769.631	
Final Drive Oil	118/	0,02 lt/jam	Rp 15.500,00	14	Rp 3.011.960	
Hydraulic Control Oil	1 [0,1 lt/jam	Rp 48.746,00	1	Rp 47.361.614	
Grease (KG)	1 [0,16 lt/jam	Rp 40.744,00	1	Rp 4.524.214	
Operator Salary					Rp 6.000.000	
	Total (Rupi	ah)			Rp 2.897.700.751	
	Total (\$))			206.979	

c. Triwulan ketiga

Tabel.22

OPERATING CO	OST D 375A-5				
Kurs Dollar	Rp 14.000,00				
Fuel	Rp 11.000,00				
Crank Case	Rp 32.813,00				
Oil Transmision	Rp 40.695,00				
Final Drive Oil	Rp 15.500,00				
Hydraulic Control Oil	Rp 48.746,00				
Grease (KG)	Rp 40.744,00				
Item	Jam/Triwulan 1	Penggunaan	Harga/Lt	Jumlah Alat	Harga/triwulan
Fuel		65,3 lt/jam	Rp 11.000,00		Rp 1.380.572.600
Crank Case		0,12 lt/jam	Rp 32.813,00		Rp 7.567.990
Oil Transmision	961	0,15 lt/jam	Rp 40.695,00	2	Rp 11.732.369
Final Drive Oil	901	0,07 lt/jam	Rp 15.500,00	2	Rp 2.085.370
Hydraulic Control Oil		0,06 lt/jam	Rp 48.746,00		Rp 5.621.389
Grease (KG)		0,04 lt/jam	Rp 40.744,00		Rp 3.132.399
Operator Salary	•				Rp 8.000.000
·	Total (R	upiah)	·		Rp 1.418.712.116
	Total	(\$)			101.337

Tabel. 23

Excavator	PC 800				
Kurs Dollar	Rp 14.000,00				
Fuel	Rp 11.000,00				
Crank Case	Rp 32.813,00				
Oil Transmision	Rp 40.695,00				
Final Drive Oil	Rp 15.500,00				
Hydraulic Control Oil	Rp 48.746,00				
Grease (KG)	Rp 40.744,00				
Item	Jam/Triwulan 1	Penggunaan	Harga/Lt	Jumlah Alat	Harga/triwulan
Fuel		37,9 lt/jam	Rp 11.000,00		Rp 801.281.800
Crank Case		0,12 lt/jam	Rp 32.813,00		Rp 7.567.990
Oil Transmision	1224	0,05 lt/jam	Rp 40.695,00	2	Rp 3.910.790
Final Drive Oil	1224	0,02 lt/jam	Rp 15.500,00	2	Rp 595.820
Hydraulic Control Oil		0,1 lt/jam	Rp 48.746,00		Rp 9.368.981
Grease (KG)		0,16 lt/jam	Rp 40.744,00		Rp 12.529.595
Operator Salary					Rp 8.000.000
	Total (R	upiah)	·		Rp 843.254.976
	Total	(\$)			60.232

Tabel. 24

Dump Truc	k Hino					
Kurs Dollar	Rp 14.000,00			Kecepatan	22,44	km/jam
Fuel	Rp 11.000,00			Handbook	26	liter/jam
Crank Case	Rp 32.813,00				1,16	liter/km
Oil Transmision	Rp 40.695,00					
Final Drive Oil	Rp 15.500,00					
Hydraulic Control Oil	Rp 48.746,00					
Grease (KG)	Rp 40.744,00					
Item	Jam/Triwulan 1	Penggunaan	Harga/Lt	Jumlah Alat	Harga/triwulan	
Fuel		26 lt/jam	Rp 11.000,00		Rp 4.397.536.000	
Crank Case		0,08 lt/jam	Rp 32.813,00		Rp 40.362.615	
Oil Transmision	1224	0,02 lt/jam	Rp 40.695,00	16	Rp 12.514.526	
Final Drive Oil	1224	0,011 lt/jam	Rp 15.500,00	16	Rp 2.621.608	
Hydraulic Control Oil		0,05 lt/jam	Rp 48.746,00	1	Rp 37.475.925	
Grease (KG)		0,12 lt/jam	Rp 40.744,00	1	Rp 75.177.569	
Operator Salary		•			Rp 6.000.000	
	Total (F	Rupiah)			Rp 4.571.688.244	
	Total	1(\$)			326.549	

d. Triwulan Keempat

Tabel. 25

OPERATING CO	ST D 375A-5				
Kurs Dollar	Rp 14.000,00				
Fuel	Rp 11.000,00				
Crank Case	Rp 32.813,00				
Oil Transmision	Rp 40.695,00				
Final Drive Oil	Rp 15.500,00				
Hydraulic Control Oil	Rp 48.746,00				
Grease (KG)	Rp 40.744,00				
Item	Jam/Triwulan 1	Penggunaan	Harga/Lt	Jumlah Alat	Harga/triwulan
Fuel		65,3 lt/jam	Rp 11.000,00		Rp 1.106.182.000
Crank Case		0,12 lt/jam	Rp 32.813,00		Rp 6.063.842
Oil Transmision	770	0,15 lt/jam	Rp 40.695,00	2	Rp 9.400.545
Final Drive Oil	770	0,07 lt/jam	Rp 15.500,00	2	Rp 1.670.900
Hydraulic Control Oil		0,06 lt/jam	Rp 48.746,00		Rp 4.504.130
Grease (KG)		0,04 lt/jam	Rp 40.744,00		Rp 2.509.830
Operator Salary			-		Rp 8.000.000
	Total (Rup	oiah)			Rp 1.138.331.248
	Total (\$	5)			81.309

Tabel. 26

Excavator	PC 400				
Kurs Dollar	Rp 14.000,00				
Fuel	Rp 11.000,00				
Crank Case	Rp 32.813,00				
Oil Transmision	Rp 40.695,00				
Final Drive Oil	Rp 15.500,00				
Hydraulic Control Oil	Rp 48.746,00				
Grease (KG)	Rp 40.744,00				
Item	Jam/Triwulan 1	Penggunaan	Harga/Lt	Jumlah Alat	Harga/triwulan
Fuel		28,9 lt/jam	Rp 11.000,00		Rp 489.566.00
Crank Case		0,08 lt/jam	Rp 32.813,00		Rp 4.042.56
Oil Transmision	1318	0,02 lt/jam	Rp 40.695,00	2	Rp 1.253.40
Final Drive Oil	1318	0,011 lt/jam	Rp 15.500,00	2	Rp 262.57
Hydraulic Control Oil		0,05 lt/jam	Rp 48.746,00	ľ	Rp 3.753.442
Grease (KG)		0,12 lt/jam	Rp 40.744,00		Rp 7.529.49
Operator Salary					Rp 8.000.00
	Total (Rup	oiah)			Rp 514.407.47
	Total (§	5)			36.74

Tabel. 27

Dump Truc	k Hino					
Kurs Dollar	Rp 14.000,00			Kecepatan	20,7	km/jam
Fuel	Rp 11.000,00			Handbook	26	liter/jam
Crank Case	Rp 32.813,00				1,26	liter/km
Oil Transmision	Rp 40.695,00					
Final Drive Oil	Rp 15.500,00					
Hydraulic Control Oil	Rp 48.746,00					
Grease (KG)	Rp 40.744,00					
Item	Jam/Triwulan 1	Penggunaan	Harga/Lt	Jumlah Alat	Harga/triwulan	
Fuel		26 lt/jam	Rp 11.000,00		Rp 3.083.080.000	
Crank Case		0,12 lt/jam	Rp 32.813,00	1	Rp 42.446.897	
Oil Transmision	1210	0,05 lt/jam	Rp 40.695,00	14	Rp 21.934.605	
Final Drive Oil	1318	0,02 lt/jam	Rp 15.500,00	14	Rp 3.341.800	
Hydraulic Control Oil		0,1 lt/jam	Rp 48.746,00	1	Rp 52.548.188	
Grease (KG)		0,16 lt/jam	Rp 40.744,00	1	Rp 70.275.251	
Operator Salary		•	-		Rp 6.000.000	
	Total (Rup	iah)			Rp 3.279.626.741	
	Total (\$)			234.259	

e. Total Biaya Operating Cost

Tabel. 28

Operating Cost Tahun 2015	
Triwulan	Biaya
Triwulan Pertama	Rp 1.428.150.109
Triwulan Kedua	Rp 4.388.891.233
Triwulan Ketiga	Rp 6.833.655.336
Triwulan Keempat	Rp 4.932.365.460
Total	Rp 17.583.062.138

BAB VI KESIMPULAN DAN SARAN

A. Kesimpulan

Berdasarkan uraian laporan kerja praktek diatas, maka dapat diambil kesimpulan yaitu:

- 1. *Match Factor* pada triwulan pertama menggunakan 1 *excavator* PC 400 dengan 7 *dump truck* triwulan kedua menggunakan 2 *excavator* PC 400 dengan 14 *dump truck*, pada triwulan ketiga 2 *excavator* PC 800 dan 16 *dump truck*, dan triwulan keempat menggunakan 2 *excavator* PC 400 dengan 14 *dump truck*, karena lokasi loadingnya sempit dan jalan hanya satu jalur, sedangkan untuk singkronnya alat menggunakan 1 *Excavator* PC 400 8 *dump truck* dan *Excavator* PC 800 dengan 9 *dump truck*, tapi satu dump truck tidak berkerja full.
- Produksi batubara triwulan pertama adalah 260.000 ton sedangkan biaya pada triwulan pertama Rp. 4.734.726.646 dan biaya operating cost sebesar Rp. 666.850.445
- 3. Biaya produksi dan sewa alat batubara pada triwulan kedua sampai triwulan empat sebesar Rp. 15.537.142.332 sedangkan operating cost sebesar Rp. 23.334.269.637 dan biaya operating cost Rp 5.375.896.293

B. Saran

Untuk meningkat produktivitas alat agar efiensi dapat mencapai target, maka beberapa saran yang dapat disampaikan antara lain sebagai berikut.

- 1. Meningkatkan produksi aktual masing-masing alat gali muat di Muara Tiga Besar Selatan harus dimaksimalkan dengan cara memaksimalkan kerja *ripping buldozer* sehingga alat gali muat muat bekerja efisiensi tanpa harus melakukan pengggalian sendiri yang mana harus dilakukan oleh *buldozer ripping*. Pada penambangan untuk tahun 2016 di Muara Tiga Besar Selatan, sebaiknya mengikuti produktivitas rencana, karena itu akan lebih menghemat biaya dan jam efektif.
- 2. Mempersiapkan alat penunjang penambangan seperti *Compactor grader,* water tank, pompa adalah yang wajib dilakukan demi tercapainya target dan keselamatan kerja.
- 3. Selalu melakukan perbaikan jalan, supaya produksinya meningkat.

DAFTAR PUSTAKA

- Howard L. Hartman. (1992), "SME Mining Engineering Handbook", Society for Mining, Metallurgy, and Exploration, Inc.: Littleton, Colorado.
- Panga yona, 2014, "Optimalisasi Transortasi Overburden Ke Back Filling Area" *Skripsi Tidak diterbitakan*. Palembang. Unsri.
- PT. Bukit Asam, Tbk, (http://www.ptba.co.id, diakses tanggal 2 Maret 2015)
- Prodjosumarto, Partanto, 1996, "*Pemindahan Tanah Mekanis*", Jurusan Teknik Pertambangan, Institut Teknologi Bandung.
- Sugiono. 2008. "Metode Penelitian Pendidikan". Bandung. Alfabeta
- Yanto, Indonesianto, 2005, "*Pemindahan Tanah Mekanis*", Teknik Pertambangan FTN, UPN "Veteran" Yogyakarta.
- ______, 2013, "Pemindahan Tanah Mekanis", Teknik Pertambangan-FTN, UPN "Veteran" Yojgyakarta.
- _____, 2009, "Specification and Aplication Handbook", 28 th Edition, Komatsu Ltd.