REKAYASA PEMBUATAN ALAT PINTU GARASI MOBIL OTOMATIS BERBASIS MIKROKONTROLER AVR ATMEGA 8535

PROYEK AKHIR

Diajukan kepada Tim Penguji Proyek Akhir Jurusan Teknik Elektronika sebagai salah satu persyaratan Guna memperoleh Gelar Ahli Madya

Oleh:

DERI SIS YANTO

NIM: 16441/2010

PROGRAM STUDI (D3) TEKNIK ELEKTRONIKA
JURUSAN TEKNIK ELEKTRONIKA FAKULTAS
TEKNIK
UNIVERSITAS NEGERI PADANG
2017

PERSETUJUAN PROYEK AKHIR

REKAYASA PEMBUATAN ALAT PINTU GARASI MOBIL OTOMATIS BERBASIS MIKROKONTROLER ATMEGA 8535

Nama : Deri Sis Yanto

Nim/BP : 16441/2010

Program Studi : D3 Teknik Elektronika

Jurusan : Teknik Elektronika

Fakultas : Teknik

Padang, Februari 2017

Disetujui Oleh:

Pembimbing,

Drs. Almasri, MT

NIP. 19640713 198803 1 016

Mengetahui Ketua Jurusan Teknik Elektronika Fakultas Teknik Universitas Negeri Padang

> <u>Drs. Hanesman, MM</u> NIP. 19610111 198503 1 002

PENGESAHAN

Dinyatakan lulus setelah dipertahankan di depan Tim Penguji Proyek Akhir Program Studi Teknik Elektronika Jurusan Teknik Elektronika Fakultas Teknik Universitas Negeri Padang

Judul : Rekayasa Pembuatan Alat Pintu Garasi Mobil

Otomatis Berbasis Mikrokontroler AVR ATmega

8535

Nama : Deri Sis Yanto

Nim/Bp : 16441/2010

Program Studi : D3 Teknik Elektronika

Jurusan : Elektronika

Fakultas : Teknik

Padang, Februari 2017

Tim Penguji

Nama Tanda Tangan

: Titi Sriwahyuni, S.Pd, M.Eng

2. Sekretaris: Drs. Almasri, MT

1. Ketua

3. Anggota : Thamrin, S.Pd, MT 3.

SURAT PERNYATAAN

Dengan ini Saya menyatakan bahwa Proyek Akhir ini benar-benar karya Saya sendiri. Sepanjang sepengetahuan Saya tidak terdapat karya atau pendapat yang ditulis atau diterbitkan orang lain kecuali sebagai acuan atau kutipan dengan mengikuti tata penulisan karya ilmiah yang lazim.

Padang, Februari 2017 Yang menyatakan,

Deri Sis yanto 16441/2010

ABSTRAK

Deri Sis Yanto : Rekayasa Pembuatan Alat Pintu Garasi Mobil Otomatis Berbasis Mikrokontroler AVR ATMEGA 8535

Saat mengeluarkan dan memasukan mobil tidak terlepas dari keberadaan pintu dimana harus membuka atau menutup pintu garasi mobil yang membuat terasa enggan untuk melakukannya, berulang kali untuk mengangkat, menarik, atau mendorongnya. Apalagi pintu garasi mobil yang pengoperasiannya secara manual mengeluarkan bunyi yang keras, susah bergerak, disamping kurang sopan juga kurang praktis. Melihat kondisi riil yang ada kebanyakan proses pengoperasian pintu garasi mobil masih dilakukan secara manual dimana campur tangan manusia masih dilbatkan secara langsung. Bagi sebagian orang, membuka dan menutup pintu garasi mobil secara manual mungkin tidak menjadi persoalan, namun sebagian orang lainnya, kegiatan seperti ini menjadi sebuah hal yang membosankan. Selain itu pintu garasi mobil yang sudah ada baik secara manual atau otomatis belum tentu juga dapat mengaman mobil dari tindakan pencurian. Berdasarkan hal tersebut penulis merekayasa dan membuat suatu Alat Pintu Garasi Mobil Otomatis Berbasis Mikrokontroler AVR ATmega 8535. Untuk merekayasa dan membuat alat sistem kontrol pintu garasi mobil otomatis ini yang digunakan sebagai pengontrol alat tersebut adalah mikrokontroler ATmega 8535 dan dibantu oleh Hanphone (user) dan modem (sistem), handphone (user) sebagai pengirim sinyal ke modem yang diteruskan ke mikrokontroler dan diproses mengaktifkan driver motor DC yang berfungsi membuka dan menutup pintu garasi mobil. Sensor fotodioda sebagai input yang diproses mikrokontroler untuk mengaktifkan motor DC yang berfungsi untuk menutup pintu garasi setelah mobil melewatinya, limits switch sebagai input yang diproses mikrokontroler yang diteruskan ke interface untuk memberi peringatan yang dikirim ke Handphone yang digunakan user bahwa adanya membuka pintu garasi mobil secara paksa. Semua proses yang berlangsung pada alat akan tampil di LCD.

Kata kunci : Mikrokontroler ATMega 8535, Handphone, Modem, Fotodioda, Driver Motor DC, Limits Switch, LCD.

KATA PENGANTAR

Puji dan syukur penulis ucapkan kehadirat Allah SWT yang telah meninggikan derajat orang-orang yang beriman dan berilmu pengetahuan, atas berkat rahmat dan karunia-Nya penulis dapat menyelesaikan proposal Proyek Akhir yang berjudul "Rekayasa Pembuatan Alat pintu Garasi Mobil Otomatis Berbasis Mikrokontroler ATMEGA8535". Selanjutnya shalawat beserta salam disampaikan kepada Nabi Muhammad SAW yang menjadi suri tauladan dalam setiap sikap dan tindakan sebagai seorang muslim.

proyek akhir yang dibuat ini, ditulis dalam bentuk laporan. Pembuatan Laporan ini merupakan salah satu syarat dalam menyelesaikan pendidikan Diploma Tiga Teknik Elektronika Jurusan Teknik Elektronika Fakultas Teknik Universitas Negeri Padang.

Penyelesaian proyek Akhir ini tidak terlepas dari bantuan dan bimbingan serta dorongan dari berbagai pihak sehingga dapat diselesaikan dengan baik, untuk itu penulis mengucapkan terima kasih kepada:

- Bapak Dr.Fahmi Rizal, M.Pd, MT, selaku Dekan Fakultas Teknik Universitas Negeri Padang.
- Bapak Drs. Hanesman, MM, selaku Ketua Jurusan Teknik Elektronika
 Fakultas Teknik Universitas Negeri Padang.
- 3. Bapak Drs. Almasri, MT, selaku Sekretaris Jurusan Teknik Elektroni¹⁻
 Fakultas Teknik Universitas Negeri Padang sekaligus pembimbing proyek akhir.
- 4. Bapak Dr. Edidas, MT, selaku Ketua Program Studi D3 Teknik Elektronika.

5. Bapak Drs. Yusri Abdul Hamid selaku Penasehat Akademis.

6. Bapak Thamrin, S.Pd, MT selaku dosen penguji proyek akhir. .

7. Ibuk Titi Sriwahyuni, S.Pd., M.Eng, selaku dosen penguji proyek akhir.

8. Seluruh Staf Pengajar beserta Teknisi Labor Jurusan Teknik Elektronika.

9. Kedua orang tua dan seluruh keluarga yang selalu ada disetiap waktu dan

selalu memberikan dukungan dan telah memberikan bantuan yang tak ternilai

harganya.

10. Teman-teman seperjuangan Program Studi D3 Teknik Elekronika Universitas

Negeri Padang yang turut membantu dan memberi semangat dalam

penyelesaian proyek akhir ini.

Akhir kata penulis mengucapkan terima kasih, semoga Allah SWT selalu

menyertai langkah penulis amin. Dan mudah-mudahan Laporan proyek akhir ini

dapat bermanfaat dan dapat menambah wawasan berfikir bagi para pembaca.

Padang, Februari 2017

Penulis

DAFTAR ISI

		Hala	aman
HAL	AMAN	JUDUL	i
HAL	AMAN	PERSETUJUAN	ii
HAL	AMAN	PENGESAHAN	iii
SURA	AT PEI	NYATAAN	iv
ABST	TRAK .		v
KAT	A PEN	SANTAR	vi
DAF	ΓAR IS	[viii
DAF	TAR T	ABEL	xi
DAF	ΓAR G	AMBAR	xii
DAF	ΓAR L	AMPIRAN	xiv
BAB	I. PE	NDAHULUAN	
	A.	Latar Belakang Masalah	1
	B.	Identifikasi Masalah	5
	C.	Batasan Masalah	5
	D.	Rumusan Masalah	6
	E.	Tujuan Proyek Akhir	6
	F.	Manfaat Proyek Akhir	7
BAB	II. KI	RANGKA TEORI	
	A.	Perangkat Keras	8
		1. Mikrokontroler ATMEGA 8535	8
		2. Foto Dioda	19
		3. Sensor Infrared	21
		4. Relay	22
		5. InterfaceRS-232	24
		6. Motor DC	25
		7. LCD 2*16	27
		8. Modem/GSM	32
		9. Short Massage Service (SMS)	33

		10. Atcomand	34
		11. Handphone	36
	B.	Perangkat Lunak	37
		1. Algoritma	37
		2. Flowchart	40
		3. Bahasa BASCOM (Basic compiler) – 8501	42
BAB II	I. PE	ERANCANGAN DAN PEMBUATAN ALAT	
	A.	Konsep dan Perancangan Pembuatan Alat	52
		1. Blok Diagram Alat 52	
		2. Fungsi Blok Diagram	
	B.	Prinsip Kerja Sistem	53
	C.	Perancangan Hardware	54
		1. Rangkaian Mikrokontroler ATMEGA8535	54
		2. Rangkaian Sensor Photodioda dan Infrared	55
		3. Rangkaian Limit Switch	55
		4. Rangkaian Driver LCD 2x16	56
		5. Rangkaian Driver Motor DC 57	
		6. Rangkaian Modem GSM 58	
		7. Rangkaian Catu Daya	61
	D.	Layout PCB Alat Pintu Garasi Mobil Secara Otomatis	63
	E.	Rangkaian Keseluruhan	64
	F.	Rancangan Perangkat Lunak Flowchart	64
	G.	Gambar Alat	66
BAB I	V. PE	ENGUJIAN ALAT DAN ANALISA	
	A.	Pengujian Alat	67
		1. Rangkaian Catu Daya	67
		2. Pengujian miktrokontroler	68
		3. Foto Dioda	69
		4. Infrared	70
		5 Relay	70

		6. InterfaceRS-232	71
		7. Motor DC	71
		8. LCD 2x16	71
		9. Rangkaian GSM SIM590E	72
		10. Handphone (Hp)	72
	B.	Langkah- langkah Pengoperasian Pintu	
		Garasi Mobil Secara Otomatis	72
	C.	Gambar Bentuk Alat	78
		Gambar Alat Tampak Depan	78
		2. Gambar Alat Tampak Belakang	78
		3. Gambar Alat Tampak Samping Kanan	79
		4. Gambar Alat Tampak Samping Kiri	79
		5. Gambar Rangkaian Alat	79
BAB	V. PE	NUTUP	
	A.	Kesimpulan	80
	B.	Saran	81
DAFTAR PUSTAKA		82	
LAMPIRAN			83

DAFTAR TABEL

Tabel	На	alaman
1.	Tabel Pengaturan Arah Putaran Motor DC	26
2.	Operasi Dasar LCD	30
3.	Konfigurasi Pin LCD	30
4.	Konfigurasi Pin LCD (RS,RW,E)	31
5.	Jenis-jenis Atcomand	34
6.	Response ATcomand	35
7.	Simbol Flowchart	40
8.	Jenis Tipe Data	43
9.	Pengujian Mikrokontroler	69

DAFTAR GAMBAR

Gamb	Sambar Hal	
1.	Bentuk Fisik ATmega 8535	8
2.	Konfigurasi Pin	15
3.	Blok diagram ATMega 8535	16
4.	Bentuk Fisik dan Karkteristik Fotodioda	20
5.	Grafik Kerja Fotodioda	20
6.	Panjang Gelombang Infrared	21
7.	Bentuk Fisik Infrared	22
8.	Bentuk Fisik Relay	23
9.	Kontruksi Relay	24
10.	Konfigurasi Pin dan Diagram Logika IC MAX232	25
11.	Komponen Motor DC	27
12.	Bentuk Fisik LCD 2x16	28
13.	Konfigurasi Pin LCD	29
14.	Contoh Flowchart	42
15.	Tampilan Halaman Pada Edtor Perangkat Lunak BASCOM	43
16.	Blok Diagram Sistem	52
17.	Rangkaian Sistem Minimum ATMEGA 8535	54
18.	Rangkaian Sensor Fotodioda dan Ifrared	55
19.	Rangkaian Limit switch	56
20.	Rangkaian Driver LCD	56
21.	Rangkaian Driver Motor DC	57
22.	Rangkaian Modul GSM SIM590E	58
23.	Koneksi Wavecom dengan Hyperterminal	58
24.	Sytax 1 Wavecom	59
25.	Sytax 2 Wavecom	60
26.	Sytax 3 Wavecom	60
27.	Sytax 4Wavecom	60
28.	Rangkaian Catu Daya 5 V	62
29.	Layout PCB Alat	63

30.	Rangkaian Keseluruan Pintu Garasi Mobil Otomatis	64
31.	Flowchart sistem Kendali Pintu Garasi Mobil	65
32.	Alat Pintu Garasi Mobil Secara Otomatis	66
33.	Gambar Titik Pengukuran Output Catu Daya 12,5 Volt	68
34.	Titik pengukuran output catu daya melalui IC 7805 5.4 volt	68

DAFTAR LAMPIRAN

	Hal	aman
1.	Lampiran I Rangkaian Keseluruhan	83
2.	Lampiran II Listing Program	84
3.	Lampiran III Gambar Bentuk Alat	93
4.	Lampiran IV Data Sheet ATMega 8535	95
5.	Lampiran V Data Sheet LM 334	117

BAB I

PENDAHULUAN

A. Latar Belakang Masalah

Teknologi selalu berkembang dari dulu hingga sekarang dan pasti akan terus berkembang hingga nanti. Teknologi-teknologi yang baru selalu diciptakan oleh manusia untuk membantu dalam mempermudah melakukan pekerjaan atau untuk menggantikan pekerjaannya. Dengan adanya penemuan-penemuan mutakhir dan perkembangan dibidang ilmu pengetahuan dan teknologi telah membuat perkembangan yang sangat berarti selain itu dapat juga meringankan pekerjaan manusia. Dalam dunia kerja maupun keseharian saat ini menuntut pengadaan alat otomatis yang dapat meringankan pekerjaan manusia.

Ilmu pengetahuan dan teknologi mulai difungsikan dengan penciptaan alat-alat yang bekerja sebagaimana tuntutan manusia saat ini. Sekarang sistem kontrol sudah meluas sampai untuk kebutuhan dirumah tangga dan sistem kontrol total dikombinasikan dengan kontrol umpan balik, pemrosesan data dan sistem monitor terpusat.

Sistem kontrol dalam kehidupan saat ini sangat diperlukan sekali untuk mempermudah pekerjaan baik dirumah maupun diluar rumah, sehingga waktu dan tenaga yang dibutuhkan untuk proses tersebut lebih efektif dan efisien. Misalnya disaat mengeluar dan memasukan mobil hal tersebut tidak terlepas dari keberadaan pintu dimana harus membuka atau menutup pintu

garasi mobil yang membuat terasa enggan untuk melakukan, berulang kali untuk mengangkat, menarik, atau mendorongnya. Apalagi pintu garasi mobil yang pengoperasiannya secara manual mengeluarkan bunyi yang keras, susah bergerak, disamping kurang sopan juga kurang praktis.

Melihat kondisi riil yang ada, kebanyakan proses pengoperasian pintu garasi mobil masih dilakukan secara manual, dimana campur tangan manusia masih dilibatkan secara langsung. Bagi sebagian orang lainnya, kegiatan seperti itu mungkin tidak menjadi persoalan, namun bagi sebagian orang lainnya, kegiatan seperti itu mungkin saja menjadi sebuah hal yang membosankan. Selain itu pintu garasi mobil secara manual belum tentu juga dapat mengaman mobil dari terjadinya tindakan pencurian.

Sistem kontrol pintu garsi mobil secara otomatis sebelumnya sudah dibuat oleh Ritomi Efardi 2012/120891 Jurusan Elektronika Fakultas Teknik Universitas Ngeri Padang, menggunakan fotodioda dalam pengoperasian pintu garasi mobil secara otomatis, disaat cahaya yang menuju fotodioda terhalang, motor yang ada dipintu garasi mobil berputar untuk membuka atau menutup pintu, permasalahannya disini seandainya cahaya yang mengenai fotodioda terhalang tanpa sepengetahuan pemilik mobil dan pintu garasi mobil terbuka sendirinya.

Tentu juga ada kelebihan dan kekurangan untuk tiap-tiap alat kontrol tersebut. Dalam rangka menoptimalkan alat kontrol pintu garasi mobil, akan lebih baik teknologi Handphon (HP) dapat disertakan. HP merupakan telepon genggam yang dapat dibawa kemana-mana dan tidak perlu disambungkan

dengan jaringan telepon mengguankan kabel. HP yaitu sebuah perangkat telemokomunikasi yaitu sistem berbasis teknologi SMS (*Short Message Service*). Saat ini aplikasi SMS telah berkembang pesat dari sistem komuikasi antar pengguna HP. SMS ini memungkinkan pemakai untuk mengirimkan perintah yang berupa pesan berbasis teks ke HP lain atau dengan komputer. Pemanfaatan teknologi SMS sudah umum digunakan dalam kehidupan sehari-hari.

Untuk dapat merelisasikan alat ini, digunakan HP dan modem yaitu HP (user) dan modem (sistem), HP (user) sebagai pengirim sinyal ke modem yang diteruskan ke mikrokontroler dan diproses untuk mengaktifkan relay. Sensor fotodide sebagai input untuk menutup pitu garasi disaat mobil melewatinya. Limits switch sebagai input yang diproses mikrokontroler diteruskan ke interface untuk memberi peringatan pada HP yang digunakan user bahwa adanya membuka pintu garasi mobil secara paksa, interface RS-232 sebuah rangkaian penghubung yang dapat meneruskan kontrol antara handphone dan rancangan alat. Short Message Service (SMS) fasilitas untuk mengirim dan menerima suatu pesan singkat berupa teks melalui perangkat nirkabel, AT Comand yang merupakan perintah standar modem seperti untuk mengirim, menerima atau membaca, menghapus sms, dan masih banyak fungsi lainnya. HP yang memberikan dukungan komunikasi menggunakan AT Comand, relay fungsinya mengoperasikan seperangkat motor, sebagai pembuka atau menutup pintu garasi mobil. Sebagai pusat pengontrolnya digunakan mikrokontroler AT8535 yang merupakan pengandali dari setiap

komponen-komponen elektronik yang dapat digunakan untuk memenuhi kebutuhan alat ini.

Mikrokontroler ini pada prinsip dapat dipakai dengan penerapan komponen-komponen elektronika yang canggih, dilengkapi dengan *Flash* PEROM (*Programable and Erasable Read Only Memory*) sebagai media memori program, mikrokontroler bekerja sesuai dengan program yang diberikan padanya. Mikrokontroler adalah salah satu suatu terobosan teknologi mikroprosesor dan mikrokontroler hadir untuk memenuhi selera industri dan para konsumen untuk membuat alat-alat bantu yang lebih canggih.

Dengan adanya alat sistem kontrol pada pintu garasi mobil tidak perlu lagi mengangkat, mendorong, dan menarik pintu garasi mobil berulang kali, dan pengamanan mobil di dalam garasi tetap terjaga karena disaat ada yang membuka pintu garasi mobil secara paksa pesan akan terkirim ke HP user bahwa adanya pembobolan pintu garasi mobil tersebut, karena alat ini dapat di operasikan secara otomatis menggunakan SMS hal itu dikarenakan SMS merupakan sebagai sistem kontrol keamanan yang dapat mengirimkan informasi dalam jarak cukup jauh.

Dari latar belakang masalah ini penulis berinisiatif untuk membuat suatu proyek akhir tentang alat yang berjudul "Rekayasa Pembuatan Alat Pintu Garasi Mobil Otomatis Berbasis MikrokontrolerAVR ATmega 8535".

B. Identifikasi Masalah

Dari latar belakang proyek akhir ini dapat diidentifikasi masalahnya sebagai berikut:

- Sistem kontrol pada pintu garasi mobil yang pengoperasiannya secara manual dapat mengeluarkan bunyi yang keras, susah bergerak, kurang sopan juga kurang praktis.
- Pengoperasian sistem kontrol pintu garasi mobil secara manual, membuat terasa enggan untuk melakukan, berulang kali untuk mengangkat, atau mendorongnya, membuat sebagian orang menjadi sebuah hal yang membosankan.
- Sistem kontrol pintu garasi mobil yang sudah dibuat sebelumnya masih memiliki kelemahan, seperti pintu garasi terbuka tanpa sepengetahuan pemiliknya.
- 4. Belum adanya sistem kontrol pada pintu garasi mobil baik itu otomatis maupun manual untuk pengamanan mobil dari tindakan kejahatan.

C. Batasan Masalah

Agar perancangan yang dibahas pada proyek akhir ini tidak terlalu luas, maka dalam perancangan ini dibatasi beberapa hal yaitu:

Merancang alat sistem kontrol pintu garasi mobil berbasis mikrokontroler
 AVR Atmega 8535 hanya sebatas yang berkaitan dengan program penggerak motor dipintu garasi mobil.

- 2. Merancang alat sistem kontrol untuk mengoptimalkan alat pintu garasi mobil secara otomatis yang sudah ada sebelumnya.
- 3. Bahasa yang digunakan dalam proyek akhir ini adalah bahasa *Basic Compiler* (BASCOM).
- 4. Merancang alat sistem kontrol pintu garasi mobil secara otomatis menggunakan SMS.

D. Rumusan Masalah

Berdasarkan batasan masalah proyek akhir ini maka r umusan masalahnya adalah : " Bagaimana Merekayasa Pembuatan Alat Pintu Garasi Mobil Secara Otomatis Berbasis Mikrokontroler AVR ATMega 8535".

E. Tujuan Proyek Akhir

Adapun tujuan proyek akhir adalah:

- Merancang dan membuat alat sistem kontrol pintu garasi mobil secara otomatis berbasis mikrokontroler AVR ATmega 8535.
- Merancang alat sistem kontrol pintu garasi mobil secara otomatis dalam pengamanan mobil dari tindakan kejahatan.
- 3. Membuat program dengan bahasa *Bascom* yang terkoneksi pada mikrokontroler AVR AT8535, sensor fotodioda, motor dan Handphone.

F. Manfaat Proyek Akhir

Adapun manfaat dari proyek akhir ini adalah:

- Dengan adanya alat ini dapat menjaga keamanan mobil, karena disaat ada yang membuka pintu garasi mobil secara paksa pesan akan terkirim ke HP user.
- 2. Bagi pengguna alat sistem kontrol pintu garasi mobil secara otomatis ini dapat membantu mengeluar dan memasukan mobil dengan mudah.