> ISSN 1410-8070

SAINSTEK

Jurnal Jlmiah Jlmu Pengetahuan dan Jeknologi
Vol. VII, Nomor 2, Maret 2005

Jurnal Ilmiah Ilmu Pengetahuan dan Teknologi
 ISSN 1410-8070
 SK REKTOR IKIP PADANG NO. 142/K12/PT/1998

Penasehat
Rektor UNP Padang
Z. Mawardi Effendi

Pengarah
Pembantu Rektor I
Yanuar Kiram
-
Pemimpin Umum
Ketua Lembaga Penelitian UNP Padang
Anas Yasin
Pemimpin Redaksi/Ketua Penyunting
Sumantri
Sekretaris Redaksi/Waka Penyunting
Waskito
Anggota Redaksi/Penyunting Ahli
Ali Amran (UNP)
B. Suprapto. B (FI. ITB)

Hasanuddin (UNP) Festiyet (UNP)
Anizam Zein (UNP)
Rusli HAR (UNP)
Jon Effendi (UNP)
Sekretariat
Yonrafdi
Siti Khadijah
Edaliani
Zahardi

Alamat Redaksi :
Lembaga Penelitian Universitas Negeri Padang,
Telp. (0751) 443450, Fax. (0751) 55628
Terakreditasi
KPTS. Dirjen Dikti Depdiknas
No. 52/DIKTI/Kep/2002
Tanggal 12 November 2002

PENGARUH PUPUK BOKHASI JERAMI TERHADAP PERTUMBUHAN TANAMAN BAWANG MERAH

(Allium cepa L.var.ascalonicum (L) Back)
Anizam Zein ${ }^{*}$

Abstract

Red onion is a kind of vegetables that gives, more advantages to life. The necessity for this plant uncrease by years. On effort to fulfill that necessity is by fertilized, that is give organic fertilizer such as straw bokhasi fertilizer. The aim of the research is to know the effect of straw bokhasi fertilizer to the growth of the red onion. This research is complete random design with five action and four repetation. The actions is by give the straw bokhasi fertlizer as follow $A=0$ gr/polibag, $B=100 \mathrm{gr} /$ polibag, $C=200 \mathrm{gr} /$ polibag, $D=300$ gr/polibag, $D=300 \mathrm{gr} / \mathrm{polibag}$, and E $400 \mathrm{gr} / \mathrm{polibag}$. The data that we found will procced by various investigation in reality level : 5% if differences found the folllowing experiment will be done based on plurality koefesien value. The result of the research shows that, gives of straw bokhasi fertilizer had an effect to the higher of the palnt, wet heavy (trubus), dry heay, the long of longest root, number of bear, and the number of leaf in clump

Key Words: Red onion, straw bokhasi

PENDAHULUAN

Usaha untuk meningkatkan produk pertanian seperti pangan (padi, palawija) hortikultur, perkebunan tidak terlepas dari peranan pupuk sebagai bahan penyubur. Bagi para petani, keberadaan pupuk sudah sangat membudidaya, atau dengan kata lain petani dan pupuk menyatu. Malahan sering ditemui banyak petani, merasa enggan menanam sesuatu tanpa memberi pupuk, pemupukan yang merupakan salah satu unsur dari panca usaha tani menjadi jalan keluar untuk meningkatkan kesuburan tanah bagi para petani yang telah menganggap pupuk dan pemupukan sebagai hal yang tidak terpisahkan dalam kegiatan usaha tani (Kusno, 1990). Pupuk buatan dirasakan sangat mahal, terlebih dalam masa krisis moneter saat ini. Petani

[^0]pada umumnya mengeluh karena tidak sesuai hasil yang diperoleh dengan biaya produksi, yang tentunya berpengaruh pada penyediaan pangan nasional. Salah satu usaha untuk mengatasi masalah tersebut adalah dengan penambahan pupuk organik, berupa kompos dengan bantuan mikroorganisme. Dengan bantuan efektif mikroorganisme (EM4) akan dihasilkan fermentasi bahan organik yang disebut bokhasi yang penerapannya belum memasyarakat pada bidang pertanian di Indosenia. Diantaranya adalah bokhasi jerami, yang bahan-bahannya terdiri atas jerami, dedak dan sekam yang banyak tersedia di lingkungan.

Bahan organik berfungsi sebagai sumber hara bagi tanaman, mengandung berbagai unsur, seperti N, P. K dan S yang berfungsi mencegah pelindian dan lain-lain. Sekam dan dedak juga merupakan salah satu bentuk bahan organik yang berguna bagi tanaman, mengandung unsur $\mathrm{N}, \mathrm{P}, \mathrm{K}$, dan S yang berfungsi dalam proses pertumbuhan.

Tanaman Gliricidia sepium banyak di tanam di pekarangan rumah, ditepi jalan bahkan tumbuh liar di lahan perkebunan. Tanaman ini hanya dijadikan sebagai tanaman pelindung atau untuk kayu bakar, pada hal tanaman ini bisa dijadikan sebagai pupuk organik yang berguna bagi tamaman, mengandung unsur $\mathrm{N}, \mathrm{P}, \mathrm{K}$ dan S yang berfungsi dalam proses pertumbuhan tanaman (Nurhidayati, 2000). Bahkan di Lampung dijadikan sebagai junjungan tanaman merica.

Penggunaan daun Gliricidia sepium yang merupakan salah satu alternatif dalam campuran pembuatan pupuk bokhasi jerami sangat baik digunakan. Eriani Munanadar (1995) menyatakan bahwa daun Gliricidia sepium mengandung carbon $43,68 \%$, nitrogen $3,85 \%$, pospor $0,43 \%$, kalium $0,62 \%$, calsium $0,34 \%$, natrium $0,05 \%$ dan banyak lagi unsur yang lain. Sedangkan Nurhidayati (2000) menemukan bahwa daun Glirucidia sepium yang terdekomposisi sebanyak 25% mampu meningkatkan pertumbuhan bibit kakao. Ditambah kan lagi penelitan Anizam Zein (2000) dengan pemberian bokhasi jerami sebanyak 150 gr per polibag dapat meningkatkan pertumbuhan tanaman kedelai

METODE PENELITIAN

Percobaan ini dilakukan di kebun biologi dan laboratorium fisiologi tumbuhan Jurusan Biologi FMIPA UNP.percobaan ini disusun dalam Rancangan Acak Lengkap (RAL) satu arah dengan 5 perlakuan dan 4 ulangan, yaitu $\mathrm{A}=0 \mathrm{gr}$ bokhasi/polibag, $\mathrm{B}=100 \mathrm{gr}$ bokhasi/polibag, $\mathrm{C}=$ 200 gr bokhasi/polibag, D \ 300 gr bopkhasi/polibag, $\mathrm{E}=400 \mathrm{gr}$ bokhasi/polibag. Parameter penelitian yang dianalisis adalah : kandungan bahan organik tanah, N total, P total tanah, panjang akar terpanjang, tinggi tanaman, jumlah anakan perumpun, jumlah daun perumpun, berat basah dan
kering akar tanaman serta berat basah trubus dan berat kering trubus tanaman. Data yang diperoleh diolah secara statistik dengan sidik ragam pada tingkat kepercayaan 5% (Gomez-Gomez, 1995) dan uji lanjut dengan LSD.

HASIL DAN PEMBAHASAN

Hasil pengukuran yang diperoleh dari parameter adalah sebagai berikut :

Tabel 1. Rerata bahan organik, N total tanah, dan p total tanah

Perlakuan	Kadar bahan organik (\%)	Nitrogen total Tanah (\%)	Pospor total tanah (ppm)
A	$3,00 \mathrm{a}$	$0,185 \mathrm{a}$	$9,501 \mathrm{a}$
B	$3,49 \mathrm{~b}$	$0,230 \mathrm{~b}$	$9,588 \mathrm{a}$
C	$3,51 \mathrm{c}$	$0,232 \mathrm{c}$	$10,553 \mathrm{~b}$
D	$3,66 \mathrm{~d}$	$0,247 \mathrm{~d}$	$13,624 \mathrm{c}$
E	$3,86 \mathrm{e}$	$2,257 \mathrm{e}$	$14,530 \mathrm{~d}$
rerata	3,42	0,230	11,559

Keterangan : Angka yang diikuti huruf kecil yang sama pada kolom yang sama berarti ridak berbeda nyata pada taraf nyata 5%

Berdasarkan data tabel 1 yang menyajikan bahan organik tanah, N total tanah, dan p total tanah menunjukkan bahwa pupuk bokhasi jerami memberiKAN pengaruh yang berbeda nyata terhadap bahan orhan organik. Dari analisis kimia pupuk bokhasi didapatkan bahan organik $18,42 \%$, hal ini memungkinkan akar menyerap lebih banyak. Bahan organik dapat mempercepat pertumbuhan tanaman, memudahkan penyerepan oleh akar, meningkatkan penyerapan akar, memperbanyak klorofil, memperoleh perkecambahan (Prakash dan Mac Bregon cit dalam Schnizer, 1991)

Kandungan N poada pupuk bokhasi jerami $1,06 \%$ cukup tertedia, yang dapat diserap oleh akar tanaman. Nitrogen merupakan komponen penting dalam penyusunan asam-asam organik, sitoplasma dan organel di dalam sel. Sel-sel ini akan dibentuk menjadi penyusun jaringan yang pada gilirannya akan menjadi organ tanaman seperti daun, bunga, buah, biji dan lain-lain (Thompson dan Troeh, 1982).

Analisis kimia pupuk bokhasi jerami menunjukkan bahwa kandungan P total adalah $12,66 \mathrm{ppm}$. Hal ini memberikan ketersediaan unsur P yang lebih besar untuk diserap akar tanaman. Menurut Bidwell (1979) maupun Devlin dan Witham (1983) pospor ditemukan dalam tanaman sebagai unsur pokok dari asam nuklaet, phospholipid, koenzim NAD dan NADP dan yang paling penting sebagai unsur pokok ATP dan senyawa berenergi yang lain.

Tabel 2. Rerata panjang akar terpanjang, tinggi tanaman, jumlah anakan dan daun perumpun

Perlakuan	Panjang akar terpanjang (cm)	Tinggi tanaman (cm)	Jumlah anakan perumpun	Jumlah daun perumpun
A	$27,65 \mathrm{a}$	$24,12 \mathrm{a}$	$5,75 \mathrm{a}$	$10,75 \mathrm{a}$
B	$32,05 \mathrm{~b}$	$26,87 \mathrm{~b}$	$6,75 \mathrm{~b}$	$14,75 \mathrm{~b}$
C	$35,32 \mathrm{c}$	$27,27 \mathrm{c}$	$7,00 \mathrm{c}$	$15,00 \mathrm{c}$
D	$37,17 \mathrm{~d}$	$29,52 \mathrm{~d}$	$7,75 \mathrm{~d}$	$16,75 \mathrm{~d}$
E	$42,62 \mathrm{e}$	$31,27 \mathrm{e}$	$6,25 \mathrm{e}$	$18,00 \mathrm{e}$
Rerata	34,56	27,81	7,10	15,95

Keterangan : Angka yang diikuti huruf kecil yang sama pada kolom yang sama berarti tidak berbeda
myata pada taraf nyata 5%
Dari data yang disajikan pada tabel 2 pupuk bokhasi jerami memberikan pengaruh yang nyata terhadap panjang akar terpanjang, tinggi tanaman, jumlah anakan perumpun, dan jumlah daun perumpun. Hal ini karena tersedianya unsur pospor dalam bokhasi jerami, sehingga terjadinya penambahan akar. Lingga (1994) menyatakan bahwa unsur pospor berguna untuk merangsang pertumbuhan akar, ditambahkan oleh Sutejo (1989) fungsi pospor dapat mempercepat pertumbuhan akar. Pada pertambahan tinggi tanaman juga terjadi peningkatan, terlihat bahwa semakin tinggi dosis, tinggi tanaman juga bertambah. Terjadinya peningkatan pertumbuhan tinggi tanaman, terjadi karena terpenuhinya unsur hara yang diperlukan untuk pertumbuhan tinggi tanaman. Hal ini sesuai dengan apa yang dikemukakan oleh Sutejo (1989) pertumbuhan tanaman akan tetap berlangsung baik apabila kadar hara yang terkandung dalam tanah tempat tumbuhnya baik. Unsur N adalah zat hara yang diperlukan oleh tanaman dalam pertumbuhan. Nitrogen juga berperan bagi tanaman untuk merangsang pertumbuhan tanaman secara keseluruhan khususnya batang, daun, dan akar (Lingga, 1994).

Tabel 3. Rerata berat basah akar, berat kering akar, berata basah trubus, dan berat kering trubus

Perlakuan	Berat basah akar (mg)	Berat kering akar (mg)	Berat basah trubus (g)	Berat kering trubus (g)
A	$0,90 \mathrm{a}$	$0,075 \mathrm{a}$	$9,40 \mathrm{a}$	$1,025 \mathrm{a}$
B	$1,17 \mathrm{~b}$	$0,082 \mathrm{~b}$	$9,92 \mathrm{~b}$	$1,125 \mathrm{~b}$
C	$1,32 \mathrm{c}$	$0,095 \mathrm{c}$	$10,30 \mathrm{c}$	$1,305 \mathrm{c}$
D	$1,92 \mathrm{~d}$	$0,112 \mathrm{~d}$	$14,42 \mathrm{~d}$	$1,660 \mathrm{~d}$
E	$2,22 \mathrm{e}$	$0,140 \mathrm{e}$	$16,55 \mathrm{e}$	$1,847 \mathrm{e}$
Rerata	1,59	0,100	12,11	1,192

Keterangan : Angka yang dikuuti huruf kecil yang sama pada kolom yang sama berarti ndak berbede
myata pada taraf nuata 5%

Dari data yang disajikan pada tabel 3 pupuk bokhasi jerami memberikan pengaruh yang nyata terhadap berat basah akar, trubus, berat kering akar dan trubus. Hal ini diduga karena banyaknya unsur nitrogen yang tersedia diperlukan untuk mempengaruhi pertumbuhan batang (umbi lapis) sehingga memberikan hasil yang baik. Sutejo (1994) menyatakan bahwa N merupakan unsur utama untuk pembentukan atau pertumbuhan bagian-bagian vegetatif tanaman seperti daun, batang, dan akar. Selain unsur N adanya unsur pospor dalam bokhasi jerami, maka pertumbuhan akar pada tiap-tiap perlakuan dapat berlangsung dengan baik, seperti ditambahkan oleh Lingga (1989) bahwa unsur pospor berguna untuk merangsang pertumbuhan akar. Di samping unsur N , dan P juga ada unsur kalsium. Unsur ini penting bagi pertumbuhan akar (Sutejo, 1989).

SIMPULAN

Pupuk bokhasi jerami dapat meningkatkan kadar bahan organik tanah, nitrogen total, dan pospor total tanah, pertambahan tinggi, panjang akar terpanjang, jumlah anakan perumpun, jumlah daun perumpun, berat basah dan kering akar, serta berat basah trubus dan kering trubus

DAFTAR PUSTAKA

Bidwell, R.G.S (1979). Plant Physiology.Second Edition, Mac Millan Publishing Co. Inc, New York
Devlin, R \& F.H. Witham (1983). Plant Physiology, Fourt Edition, Willanr Grant Press, Boston

Gomez,K.A \& A.A. Gomez (1995) Prosedur Statistik Untuk Penelitian Pertanian, Terjemahan Endang Syamsudin dan J. Baharsyah, U.I Press, Jakarta
Kusno, S (1990). Pencegahan Pencemaran Pupuk dan Pestisida, PT, Gramedia, Jakarta
Lingga, \mathbf{P} (1994). Petunjuk Penggunaan Pupuk, Penerbit Swadaya, Jakarta

Munandar, E (1994). Pengaruh Tengang Waktu Pemberian Air dan Dosis Bahan Organik Terhadap Pertumbuhan Bibit Kakao, Tesis PPS UGM, Yogyakarta
Nurhidayati (2000). Pengaruh Hasil Dekomposisi Daun Gliricidia sepium Terhadap Pertumbuhan Bibit Kakao (Theobroma cacao L)

Pada Tanah Podzolik Merah Kuning, Skripsi, Biologi FMIPA, Padang

Schnitzer, M (1991). Soil Organic Mater, The Next 75 Years, Soil Science. 151: (48-58)

Sutejo, M (1990). Analisa Tanah, Air dan Jaringan Tanaman, Penerbit Rineka Cipta, Jakarta.
Thompson, L.M and F.R. Troeh (1976). Soil and Soil Fertility, Tata Mc Graw Hill Publishing Co. Inc, New York

Zein, A (2000). Pengaruh Waktu Dekomposisi Akar Kedelai dan Mikroriza Vesicular Arbuscular Terhadap Pertumbuhan Kedelai (Glycine max (L) Merr) Pada Tanah Podzolik Merah Kuning. Biologi FMIPA, Padang.

[^0]: *) Dosen Jurusan Biologi FMIPA Universitas Negeri Padang

