PROCEEDING

ASEAN FORUM AND INTERNATIONAL CONFERENCE ON SPORT SCIENCE AND TECHNOLOGY (AFICSST)
Bali, Indonesia, 8-11 August 2014

"Bridging The Gap In The Advancement Of Sport Sciences And Technology Implementation Among South East Asia Countries"

The Deputy Asistant of Sport Science and Technology Division
Deputy Minister of Elite Sports Enhancement
Ministry of Youth and Sports

http://www.kemenpora.go.id/AFICSST/
Assalamu’alaikum warraḥmatullāhi wabarakatuh

May we first make our highest praise and thank to Allah SWT, for His bless we able to gathered here on the prestigious occasion Asean Forum And International Conference On Sport Science And Technology (AFICSST) under the theme, “Bridging The Gap In The Advancement Of Sport Sciences And Technology Implementation Among South East Asia Countries”. It is expected this event will create a venue for ASEAN sport scientists to learn, and understand each other’s heterogeneous level of expertise and special feature in the area of sport sciences theories, their praxis, and in the seriousness level of their implementation.

This conference which hold by The Deputy Assistant of Sport Science and Technology Division Ministry of Youth and Sports, The Republic of Indonesia, it’s also expected to become arena for exchange experiences and expertise and at least information regarding the best practices in the area of sport sciences and technology, to learn together from the experience of other advance countries who also gather in the event of conference in the respected sport disciplines, and to initiate a concrete cooperation and synergy between and among university academicians and students in the area of sport sciences and technology researches.

I would like to deliver our highest respect and appreciation to Minister of Youth and Sport of Republic of Indonesia and to all those who have helped bring this event, and it is my great pleasant to express my deep gratitude to our honourable guests, Dr. Bart Crum Retired Professor from the Free University, Amsterdam Netherlands; Mr. Randall L. Wilber, Ph.D., FACSM, Senior Sport Physiologist from USOC; Prof. Gareth Stratton, Ph.D. from Swansea University, United Kingdom; Prof. Martin Lames from Faculty for Sport and Health Science Technical University Munich, Germany; Mr. Kevin Ball, Ph.D. Biomechanist from ISGAL Victoria University Australia; Prof. Hideaki Soya, Ph.D. from University of Tsukuba Japan; Assoc Prof. Ma Xindong, Ph.D. from Tsinghua University, Beijing, China; Prof. Hyo Jeong Kim, Ph.D. from KNSU, Seoul, Korea; Prof. Suebsai Boonveeraput, Ph.D. from Srinakarinwirot University, Thailand; Assoc Prof. Mohd Salleh Aman, Ph.D. from University of Malaysia, Malaysia and last but not least to Prof. Toho Cholik Mutohir, Ph.D. from State University of Surabaya Indonesia. I really expect that this meeting will be beneficial for all of us and have direct to the development of the sports.

Allow me to express my thank to the participants and audiences from Indonesia and other foreign countries who are enthusiastic to attending this precious conference. I do hope that all audiences will gain important values and collaborate it into our own fields and make crucial changes in the future. Beside that, I also convey thank to all of organizing committee who has gave their outstanding commitment for presenting this International conference.

Wassalamu’alaikum warraḥmatullāhi wabarakatuh

Sincerely yours,

Prof. Dr. Djoko Pekik Irianto, M.Kes., AIFO.
SCIENTIFIC COMMITTEE

Chair:
Prof. Dr. Imam Sujudi, M.A.

Deputy Chair:
Prof. Dr. Tandiyo Rahayu, M.Pd.

Members:
Prof. Dr. Hari Setijono, M.Pd.
Prof. Dr. Adang Suherman, M.A.
Prof. Dr. M. E. Winarno, M.Pd.
Prof. Dr. Hari Amirullah Rachman, M.Pd.
Dr. Wahjoedi, M.Pd.
Dr. Asep Suharta, M.Pd.
Dr. Dimyati, M.Si.
Drs. Toto Subroto, M.Pd.

Reviewer:
Dr. Setya Rahayu, M.S.
Drs. Agus Mahendra, M.A.
Bambang Sutiyono, M.Pd.
Herka Maya Jatnika, M.Pd.
Muhammad Alfin, M.Pd.
Prayogi Dwina Angga, S.Or., M.Pd.
CONTENTS

COVER 1

PREFACE 2

SCIENTIFIC COMMITTEE 3

CONTENTS 4

MAIN SPEAKER

THE SCIENTIZATION OF HIGH-PERFORMANCE SPORT: LOOKING FOR BALANCE BETWEEN TECHNOLOGICAL PROGRESS AND ETHICAL RESPONSIBILITY
Dr. Bart Crum, The Netherlands 11

THE ROLE OF COMPUTER SCIENCE IN THE ADVANCEMENT OF HIGH PERFORMANCE SPORT
Prof. Dr. Martin Lames, TU München, Germany 19

USE OF SPORT SCIENCE AND TECHNOLOGY IN THE PREPARATION OF TEAM USA ATHLETES
Randall L. Wilber, PhD, FACSM, Senior Sport Physiologist, Athlete Performance Lab, United States Olympic Committee, Colorado Springs, Colorado, USA 23

THE EFFECT OF GROWTH AND MATURATION ON PERFORMANCE: MESSAGES FOR TALENT DEVELOPMENT
Professor Gareth Strutton, Applied Sports Technology Exercise Medicine (A-STEM) Research Centre, Swansea University, UK 25

CHANGES IN SERUM CARTILAGE OLIGOMERIC MATRIX PROTEIN (COMP), PLASMA CPK AND PLASMA hs-CRP IN RELATION TO RUNNING DISTANCE IN A MARATHON (42.195 KM) AND AN ULTRA-MARATHON (200 KM) RACE
Hyo Jeong Kim, Yoon Hye Lee, & Chang Keun Kim, Associate Professor, Director of Aging, Research Center, Korea National Sport University, South Korea 26

SPORT SCIENCES AND TECHNOLOGY: CHALLENGES AND OPPORTUNITIES IN IMPROVING SPORT PERFORMANCE IN INDONESIA
Toho Cholik Mutohir, Professor, Faculty of Sport Sciences, State University of Surabaya, Indonesia 32

USING BIOMECHANICS TO IMPROVE PERFORMANCE
Kevin Ball, Institute of Sport, Exercise and Active Living (ISEAL) Victoria University, Melbourne Australia 39

POTENTIAL EFFECTS OF MILD EXERCISE ON THE BRAIN AND COGNITIVE PERFORMANCE: TRANSLATIONAL RESEARCH FROM ANIMAL TO HUMAN
Hideoaki Soya, Ph.D., Chairman, Laboratory of Exercise Biochemistry & Neuroendocrinology University of Tsukuba Faculty of Health & Sport Sciences, Tsukuba, Japan 43

IMPACT OF THE TALENT DEVELOPMENT ENVIRONMENT ON HIGH PERFORMANCE ATHLETES IN CHINA
Ma Xindong & Wu Dongyi Division of Sport Science & Physical Education, Tsinghua University, Beijing & The School of Social Sciences of Tsinghua University, Beijing 51
SPORT PSYCHOLOGY CONSULTING FOR THAI NATIONAL TEAM: SUCCESS AND CHALLENGE
Suebsai Boonneerabut PhD, Department of Sport Science, Faculty of Physical Education, Srinakharinwirot University, Thailand

AN ASSESSMENT ON VARIOUS DISCIPLINES AND TECHNOLOGY OF SPORT SCIENCE IN MALAYSIA
Mohd Solihin Aman, PhD
Sport Centre, University of Malaya

ORAL PRESENTATION

Sport Biomechanic & Technology

VIDEO TAPE FEEDBACK: A REWARDING TECHNIQUE TO IMPROVE KEDENG SPIKE IN SEPAKTAKRAW SPORT
I Ketut Semarayasa & I Wayan Artamayasa, Ganesha University of Education, Indonesia

SOCCER GAME ANALYSIS WITH VISUAL BASIC PROGRAMMING
Mohammad Faruk, State university of Surabaya, Indonesia

ELECTRIC POLE HIGH JUMP BASED ON ATMega16 MICROCONTROLLER USING DC MOTOR AND REMOTE SYSTEM TO SUPPORT SPORTS ACHIEVEMENT
Nova Supamanto, Widi Putra Guna, & Rizki Edi Juwanto, State University of Yogyakarta, Indonesia

A THREE-DIMENSIONAL ANALYSIS OF THE TENNIS SERVE
Yadi Sunaryadi, Indonesia University of Education, Indonesia

Sport Exercise & Health

THE EFFECT OF SINGLE SESSION AEROBIC EXERCISE WITH ERGOCYCLE TO BGL IN PATIENTS WITH TYPE 2 DIABETES MELLITUS
Korina Yulandari & Wara Kushartanti, State University of Yogyakarta, Indonesia

THE EFFECT OF YOGAROBIC ON RECOVERY HEART RATE AND MENOPAUSE SYMPTOMS IN PERIMENOPAUSAL WOMENS
BM. Wara Kushartanti, State University of Yogyakarta, Indonesia

ACTN3 GENE: A CANDIDATE GENE FOR SPORT PERFORMANCE (STUDY CASE OF INDONESIAN COMBAT SPORTS ATHLETES)
Rachmadi Laksmi Ambardini, State University of Yogyakarta, Indonesia

CORRELATION BETWEEN PHYSICAL ACTIVITIES AND ALIVE AGE ESTIMATION MEMBER OF AEROBIC GYMNASTICS STUDIOS IN SURABAYA
Kunjung Ashadi, State University of Surabaya, Indonesia

THE IMPORTANCE OF VITAMIN D IN SPORTS
Ni Luh Kadek Ali Aroani, Ganesha University of Education, Indonesia

THE ROLE OF VITAMIN C AND E AS ANTIOXIDANT IN EXERCISE
Putil Adi Suputra & Made Sudiyanti Pasek, Ganesha University Of Education, Indonesia

THE INFLUENCE OF SPORTSTART ON THE PERCEPTUAL MOTOR DEVELOPMENT OF EARLY AGE CHILDREN
Dian Pujianto, Bengkulu University, Indonesia
ENERGY METABOLISM IN SPORTS
I Nengah Sandi & Daniel Womsiwor, Udayana University, Indonesia

TRAINING METHODS TO INCREASE FOOTBALL PLAYER'S AGILITY (CASE STUDY IN SMK X DENPASAR)
Daniel Womsiwor & I Nengah Sandi, Cenderawasih University, Indonesia

THE BALANCE TRAINING AND ANKLE SPRAINS IN BADMINTON PLAYERS (REVIEW)
Sri Sumartimingsih, State University of Semarang, Indonesia

PSYCHOMOTOR THERAPY IN RELATED TO PHYSIOTHERAPY IN SPORT FOR PEOPLE DISABILITIES: A
COMPILEATION OF VISITING STUDY
Bambang Abduljabar, Indonesia University of Education, Indonesia

THE EFFECT OF SPEED AGILITY AND QUICKNESS (SAQ) AND PLYOMETRIC ON SPEED AND AGILITY
OF MALE FOOTBALL ATHLETES IN TADULAKO UNIVERSITY
Didik Purwanto, Tadulako University, Indonesia

Sport Psychology & Education

MENTAL TOUGHNESS AND TEAMWORK ON WOMEN ATHLETES OF MARTIAL ART, GAMES, AND
CONCENTRATION SPORTS (STUDY ON ATHLETES OF WEST JAVA NATIONAL OLYMPIC COMPETITION
XIX REGIONAL TRAINING CENTRE)
Nina Sutfresna, Berlona, Ucup Yusup, Etor Suwardar, Suhana, Indonesia University of Education, Indonesia

THE EFFECTS OF PSYCHOLOGICAL ASPECTS TOWARDS INDIVIDUAL 100 METERS SPRINTER'S
PERFORMANCE
Miftakhul Janah, State University of Surabaya, Indonesia

THE PRELIMINARY STUDY OF MENTAL IMAGERY FUNCTIONS IN BADMINTON BEGINNER ATHLETES
Yusuf Hidayat & Sukadiyanto, Indonesia University of Education, Indonesia

THE IMPROVEMENT OF SELF-CONFIDENCE THROUGH THE IMAGERY TRAINING PROGRAM AMONG
WUSHU ATHLETES IN CENTRAL JAVA
Heny Setyawati, State University of Semarang, Indonesia

THE EFFECT PETILEP IMAGERY ON ACCURACY RETURNING BADMINTON SERVICE
Suvat Luangon, A. Sripatt, and S. Boonveerabut, Srinakharinwirot University, Thailand

STRUCTURE OF INTELLECTUAL ON BADMINTON SERVING IMAGERY ABILITY
Nuatong Anutararanggoon, S. Boonveerabut, and A. Siripatt, Srinakharinwirot University, Thailand

LITERATURE REVIEW ABOUT IMAGERY ON PENCAK SILAT OF MATCH CATEGORY: A COMBINATION
OF TWO THEORIES OF IMAGERY
Kurniati Rohayuni, Malang State University, Indonesia

THE CONTRIBUTION OF PARENTING PATTERN AND SOCIAL ENDORSEMENT TOWARDS SWIMMING
ATHLETES ACHIEVEMENT IN YOGYAKARTA SPECIAL DISTRICT
Agus Supriyanto, State University of Yogyakarta, Indonesia

THE INFLUENCE OF INTEGRATED PSYCHOLOGICAL SKILL TRAINING IN ENHANCING SELF
CONFIDENCE OF PPLP DKI JAKARTA TAEKWONDOIN
Muhammad Syaqui Putra, University of Indonesia, Indonesia

ANXIETY CONTROL THROUGH THE ACTIVE MEDITATION IN HIKING PROGRAM
Kardjono, Indonesia University of Education, Indonesia
MENTAL HEALTH BENEFITS OF PHYSICAL ACTIVITY AND SPORT PARTICIPATION
Made Suadnyani Pasek, Putu Adi Suputra, Made Sri Dewi Lestari, Ganesha University of Education, Indonesia 193

IMAGERY EXERCISE IN GYMNASTICS MOTIVATION AND SELF CONFIDENCE
Helmy Firmansyah, Indonesia University of Education, Indonesia 199

THE EFFECT OF PETTLEP IMAGERY ON BADMINTON SERVING ACCURACY
Tawiphop Peungsoonthorntrims, A. Stripart, and S. Boonveerabut, Sirnakarunwirot University, Thailand 206

MANAGEMENT OF SPORT TOURISM AS A POTENTIAL FACTOR IN ORDER TO PREVENT SPIKE INCIDENCE OF HIV/AIDS IN BALI
Made Kurnia Widiastuti, Putra Adnyana, Ni Putu Dewi Sri Wahyuni, Ganesha University of Education, Indonesia 211

Sport Sociology, Philosophy & Management

STAGNATION OF SPORT SCIENCES IN THE HEGEMONY OF POSITIVISM PARADIGMS (A REFLECTIVE STUDY UPON THE DEVELOPMENT OF SPORT SCIENCES STUDENT ATTAINMENT IN FACULTY OF SPORT SCIENCES, YOGYAKARTA STATE UNIVERSITY)
M. Hamid Arswar & Hari Aminullah Rachman, State University of Yogyakarta, Indonesia 217

LOCAL WISDOM AND SPORTS TOURISM SYNERGY TO IMPROVE AN ECONOMIC VALUE
I Ketut Sudiana, Ganesha University of Education, Indonesia 222

ANALIZING GRAND STRATEGY OF THE 2014 – 2024 NATIONAL SPORT PERFORMANCE DEVELOPMENT
Wawan S. Suherman, State University of Yogyakarta, Indonesia 226

ASSESSMENT PHYSICAL FITNESS FOR TENNIS PLAYER
Ngatman Soewito, State University of Yogyakarta, Indonesia 233

Sport Talent & Assessment

DEVELOPED LINEAR MODEL TO DETERMINE FITNESS CAPACITY IN SCREENING, COACHING AND TRAINING EVALUATION
Bambang Purwanto, B. Pramono, Hariana Asnar E., Airlangga University, Indonesia 238

SPORT TALENT SEARCH IN SCHOOL (WAYS OF SEARCHING TALENTED ATHLETES)
Hanik Liskustwyawati & Sapta Kunta Pumama, Soebels Maret University, Indonesia 243

PHYSICAL AND PSYCHOLOGICAL FACTOR AS POTENTIAL INDICATORS SPORT TALENT OF ROWING
Nurkholis, State University of Surabaya, Indonesia 248

CONTENT VALIDITY OF FUTSAL SKILL TEST
Agus Sutaworo Dwi Marhaendro, State University of Yogyakarta, Indonesia 256

ANALYSIS OF THE ABILITY WOMEN’S BASKETBALL PLAYERS IN LIMA BASKETBALL COMPETITION 2013-2014 USING FIBA LIVESTAT
Budi Aryanto, State University of Yogyakarta, Indonesia 263

COMPARASION OF BODY COMPOSITION AND SOMATOTYPE CHARACTERISTICS OF SPRINTER ATHLETES AT AUE AND YSU
Eddy Purnomo, Ria Lumintuanso, Norikatsu Kasuga, Hideki Suzuki, State University of Yogyakarta, Indonesia 268
FORMETRIC MEASUREMENT OF POSTURE AND SPINAL ALIGNMENT FOR SOUTH SULAWESI'S NATIONAL ATHLETES IN INDONESIA
Muhammad Nadjib Bustan, Baharuddin Talib, Ians Aprilio, Khairel Anwar, State University of Makassar, Indonesia

ANTHROPOMETRIC, PHYSIOLOGICAL AND BIOMOTORIC PROFILES OF MALE JUNIOR SEPAK TAKRAW PLAYERS
Nining Widyah Kuromanik, State University of Surabaya, Indonesia

EDUCABILITY STUDENT PROFILE MOTOR SKILLS EDUCATION HEALTH AND PHYSICAL RECREATION FACULTY OF SPORT AND HEALTH GANESHA EDUCATION UNIVERSITY
I Wayan Anarayasa, Ganesh University of Education, Indonesia

DEVELOPING A MODEL OF EXERCISE FOR PERFORMANCE SPORTS QUALITY EVALUATIONS (EMLO) KONI NORTH SUMATRA PROVINCE
Imran Ahmad, Suherjo, Rahma Dewi, State University of Medan, Indonesia

AUTHENTIC ASSESSMENT INSTRUMENT DEVELOPMENT FOR SKILL IN PHYSICAL EDUCATION, SPORT, AND HEALTH
Haradi, State University of Medan, Indonesia

FUNCTIONAL EVALUATION OF SHOULDER BASED ON CONSTANT SCORE ON PORDA JABAR BASEBALL TEAM
Leonardo Lubis, Padjajaran University, Indonesia

POSTER PRESENTATION

THE EFFECTIVENESS OF SIDE ARM THROW COMPARED WITH OVERHAND THROW IN SOFTBALL
Fajar Awang Irawan, Semarang State University, Indonesia

CAPABILITY OF THE FUNCTIONAL MOVEMENT SCREEN IN PREDICTING INJURIES AMONG ATHLETES: A REVIEW
Rex John G. Bawang, Benguet State University

THE EFFECT OF 2.5% GLUCOSE ADMINISTRATION TOWARD FUTSAL PLAYERS AEROBIC ENDURANCE IN TUNGGUL HITAM PADANG WEST SUMATERA
Anton Romaini, State University of Padang, Indonesia

THE EFFECT OF PLYOMETRICS TRAINING TO ENHANCE LEG POWER FOR LAY UP PRACTISING (CASE STUDY IN BASKETBALL EXTRACURRICULAR SMP NEGERI 1 SINGOSARI)
Fuad Noor Heza, State University of Malang, Indonesia

STRENGTH AND CONDITIONING FOR 110 METER Hurdles
Roban Darwin B. Tallo

EFFECTS OF DYNAMIC AND STATIC STRETCHING ON THE SUBSEQUENT PITCHING PERFORMANCE IN COLLEGIATE BASEBALL PLAYERS
Theresa May C. Garin

SOLUTION-FOCUSED BRIEF COUNSELING (SFBC) FOR SPORT ACHIEVEMENT MOTIVATION IN SPORTS COACHING EDUCATION
Siti Hajar, Tunas Pambangunan University, Indonesia

POA-BASED SNAKES AND LADDERS GAME: IMPROVING ELEMENTARY STUDENTS' MULTILATERAL ABILITY
Margono, Yogyakarta State University, Indonesia
THE EFFECTIVENESS OF FAIR PLAY REWARDS IN SPORTSMANSHIP, FAIR PLAY, AND CHARACTERS IN U12 SOCCER GAME
Wachid Sugiharto, IKIP PGRI Palembang, Indonesia 343

SOCIAL INTERACTION AMONG FOOTBALL PLAYER ETHNO-PHENOMENOLOGY APPROACH AT PERSIBA BANTUL
Komarudin, State University of Yogyakarta, Indonesia 350

RELATIONSHIP BETWEEN SPORT COMMITMENT AND ATHLETE BURNOUT AT RAGUNAN JUNIOR HIGH SCHOOL STUDENT ATHLETE
Riwanto & Sri Fatimawati, University of Indonesia, Indonesia 357

HEALTH PROMOTING AND EXERCISE BEHAVIORS OF PEOPLE WITH PHYSICAL DISABILITIES IN THAILAND
Apichart Satpatt, D. Suksom, S. Taweepompathomkul, S. Khongprasert, and K. Sirihun, Srinakharinwirot University, Thailand 363

THE EFFECT OF FEEDING WITH DIFFERENT GLYCEMIC INDEXES ON OXIDATIVE STRESS OF COLLEGE ATHLETES
Wilda Weis, State University of Padang, Indonesia 364
THE EFFECT OF FEEDING WITH DIFFERENT GLYCEMIC INDEXES ON
OXIDATIVE STRESS OF COLLEGE ATHLETES

Wilda Wells
State University of Padang

ABSTRACT
This study aims to analyze the effect of feeding with different glycemic indexes on the
level of oxidative stress of college athletes. The study design is a randomized
controlled experiment. The number of subjects involved in the study are 14 persons
consisting of 7 within high-IG group and 7 within low IG group. The treatment given is
high IG and low IG food. The intervention food contains 1000 calories consisting of
70% carbohydrates, 15% protein and 15% fats. The study findings show increased
MDA serum level after 5 km running both in high-IG group and low IG group. The
average increase in MDA serum level in high-IG group is higher than that of the low IG
group. There is an effect of glycemic index on the MDA serum level on day 1
measurement of intervention.

Keywords: glycemic index, MDA serum, oxidative stress.

INTRODUCTION
Recently we saw frequent deaths happened to former athletes or people who
used to be active in sports. Cases of death in the majority of elite long distance runners
from coronary heart disease during their productive age have attracted the attention of
experts. They suspect that there is a connection between the cases of illness and death with long-term oxidative stress events experienced by the athletes (Harjanto,
2004). This indicates that, beyond its benefit for health, sports can also have
detrimental and even fatal effects on the health. To gain the proper benefit of sports
and to achieve optimal fitness, the American College of Sports Medicine (ACSM)
recommends that sports can be done three to five days a week with each exercise
time at least 15 minutes. The time for each exercise can be increased to 30 to 60
minutes at appropriate intensity in order to obtain better results (de Vries et al., 1994).
Moderate physical activity on a regular basis can effectively prevent chronic diseases
such as heart disease, diabetes, cancer, hypertension, obesity, depression and
osteoporosis (Warburton et al. 2006). In contrast, excessive physical activity will trigger
free radicals. This phenomenon is consistent with the Horensis theory stating that low
dose of substances could enhance good effect whereas high dose would otherwise
have inhibitory effect. Moderate exercise is good for health, but excessive amount of
exercise will lower its benefits (Hayes 2008). Radak et al. (2005) extends the theory of
Hormesis to the good effects of physical exercise (sports) performed regularly on the
production of reactive oxygen species (ROS).

Oxidative stress will happen when there is an imbalance in the formation of
reactive oxygen species exceeding the body’s ability to neutralize it. This imbalance is
caused by a lack of natural antioxidant defenses in the body, lack of antioxidants intake
from food and excessive free radical production due to environmental pollutants,
excessive nutrient intake, and over training. According to Clarkson (2000), strenuous
physical activity can increase the oxygen consumption 10 to 15 higher than the resting
state to meet energy needs. The increasing oxygen consumption will result in oxidative
stress which plays a role in the production of free radicals and lipid peroxides. Direct
evidence of the study findings in normal subjects and those with diabetes shows that
hyperglycemia or food intake accompanied by increased glucose can cause oxidative
stress and lower antioxidant resistance, and increased oxidative stress is significantly
greater after consuming food which produces a greater degree of hyperglycemia (Ceriello et al. 1999).

Oxidative stress is associated with increased pathological processes of disease, nitric oxide turnover and muscle damage after exercise (McAnulty et al., 2007). Augustin et al (2002) describes that consuming food with high glycemic index in the long-term can trigger the incidence of some diseases such as diabetes, coronary heart disease, breast cancer, colon cancer, prostate cancer and obesity. The alleged risks of consuming food with high glycemic index in the long term associated with the incidence of degenerative diseases have encouraged a research to prove these allegations. This study aims to analyze the effect of feeding with different glycemic indexes on the level of oxidative stress of college athletes after 5 km running.

METHODS

Design

The study design is a randomized, controlled experiment which studies the effect of IG on the level of oxidative stress in athletes. The research subjects are male college athletes between the ages of 18-22 years who are active in sports training. The number of subjects chosen are 14 people, randomized into three treatment groups. They are high IG group (7 persons) and low IG group (7 persons). The data taken in this study are the subjects’ characteristics such as age, weight, height, and BMI; venous blood samples are taken for examination of MDA serum level. Intervention food with high and low IG containing 1000 calories consisting of 70% carbohydrates, 15% protein and 15% fat for one meal is administered 3 times daily for two weeks.

Material

The materials used to test the MDA level is the thioarbituric acid (TBA), 1,1,3,3-tetraethoxy propane (TEP), trichloroacetic acid (TCA) solvent ions. The tools used during the study are treadmills, spectrophotometers, ELISA reader, water bath, micro centrifuge tube effendorf, vortex, micro glass pipette and a set of glass tools. The high IG food consists of Mekongga rice, chicken, carrots and watermelon and low IG food consists of Ciookan rice, chicken, oranges and carrots.

Experimental Procedure

On day 1 and day 15 of the intervention, blood samples are taken after fasting and 5 km running. The 5 km running is done on a treadmill with the intensity of 65-75% maximal pulse at the IPB Physical Fitness Center Bogor. Examination of MDA serum is determined using a spectrophotometer carried out in the Biochemistry Laboratory of Brawijaya University Malang. Test of antioxidant activity is done using DPPH method (Boiase et al. in Molyneux 2004), carried out in the Laboratory of Food Biochemistry, Department of Community Nutrition IPB Bogor. The study protocol has obtained ethical approval from the Ethics Committee of Research and Development Center of the Ministry of Health with a decree number KE.01.07/EC/433/2011 dated July 24, 2011.

Statistical Analysis

The study findings are presented in the form of mean and standard deviation (x ± sd). The effect of glycemic index on the performance of MDA serum is tested with t-test. The reliability level used for the overall analysis is 95%.

RESULTS AND DISCUSSION

Increased oxygen consumption will produce oxidative stress which plays a role in the formation of free radicals and lipid peroxides. Resistance system of free radicals minimizes the radical damage (Clarkson 1995). One way to detect the level of oxidative
stress can be from the MDA parameters in the blood. The study results show average increase in MDA serum level in both groups on day 1 after consuming intervention food and after 5 km running, the increase in MDA level of the high IG group is higher than that of the low IG group. There are differences in the average level of MDA after a significant running in both treatment groups (p<0.05). The 15th day of the measurement shows that there is also an increasing trend of the average level of MDA after running in both treatment groups and the increase of MDA level in high IG group is relatively higher than that of the low IG group. There is no significant difference in the average level of MDA in both treatment groups. Distribution of median MDA level of the subjects according to the treatment given can be seen in Table 1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Time</th>
<th>Sampling</th>
<th>Low IG</th>
<th>High IG</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDA (ppm)</td>
<td>Day 1</td>
<td>Fasting</td>
<td>0.445±0.064</td>
<td>0.586±0.199</td>
<td>0.101</td>
</tr>
<tr>
<td></td>
<td></td>
<td>After Running</td>
<td>0.469±0.086</td>
<td>0.705±0.116</td>
<td>0.001*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p value</td>
<td>0.278</td>
<td>0.289</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Difference</td>
<td>0.024±0.053</td>
<td>0.116±0.269</td>
<td>0.381</td>
</tr>
<tr>
<td></td>
<td>Day 15</td>
<td>Fasting</td>
<td>0.760±0.205</td>
<td>0.754±0.439</td>
<td>0.982</td>
</tr>
<tr>
<td></td>
<td></td>
<td>After Running</td>
<td>0.639±0.196</td>
<td>0.919±0.429</td>
<td>0.662</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p value</td>
<td>0.268</td>
<td>0.545</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Difference</td>
<td>0.078±0.170</td>
<td>0.154±0.637</td>
<td>0.767</td>
</tr>
</tbody>
</table>

These findings show that there is a tendency of increased MDA level after exercise both in the low IG and high IG groups. This is in line with the research of Bloomer et al. (2005) that there is an increase in the oxidative stress marker (MDA) after acute aerobic and anaerobic exercise performed for 30 minutes. Increased MDA level is higher in the group with acute anaerobic exercise. In this study it appears that there is a trend increase in MDA level in the high-IG group which is higher than that of the low IG group, both on day 1 and day 15 measurement. This finding is in line with the study results of Hu et al. (2006) who examined the association of glycemic index with oxidative stress markers in population study in which the concentration of MDA increased from 0.55 to 0.73 μmol/L from the lowest IG quartile to the highest IG quartile, positive relation between IG and the MDA level will look stronger in the BMI < 25.5 kg/m2. Furthermore Hu et al (2006) concluded that the consumption of high-IG foods plays a role in the increase of chronic oxidative stress. Presumably higher increased MDA level in the high IG group is caused by high blood glucose level after eating which triggers oxidative stress. According to Ceriello et al. (1997), acute increase in blood glucose concentration produce free radicals through non-enzymatic glycation and imbalance of the NADH to NAD ratio in the cell. The results of this study demonstrate that the administration of food with different glycemic index affect MDA level as the oxidative stress parameters. The food with high glycemic index turns out to cause higher blood's MDA level than the food with low glycemic index.

In general, the research data show an increase in MDA level after 5 km running in both treatment groups. This study's findings are consistent with the results of the study of Fauzi et al. (2007) in subjects who exercise skipping rope for 20 minutes with intensity of 65-75% VO\textsubscript{max}. He concluded that the blood MDA level had increased which was tested immediately after exercise. It is also in line with the findings of Guzel et al. (1997) who concluded that the MDA level increased immediately after the subjects conducted resistance exercise both in the group of high responders and low
responders. The research of Akkus (2011) also proved a significant increase in thiobarbituric acid-reactive substances (TBARS) after acute exercise both in male and female subjects. On the other hand, acute exercise also increases the level of antioxidant enzymes such as glutathione (GSH) and superoxide dismutase (SOD). There is an effect of exercise intensity on the level of MDA. The highest level of MDA after exercise is detected in the group with high-intensity exercise (80% V̇O₂max) (Mohlefi et al. 2012). Both aerobic and anaerobic exercises are potential to generate reactive nitrogen or oxygen species and subsequently produce oxidative stress in both human and animal models (Fisher-Wellman and Bloomer 2009).

CONCLUSION

The MDA level increases after 5 km running both in low IG and high-IG groups. A significant increase in MDA level is seen in the high IG group. There is an effect of feeding with different glycemic indexes on the MDA serum level on day 1 intervention. However, there is no effect of the glycemic index on the increase of MDA serum level after 5 km running on day 15 of the intervention. Composition of low IG food with relatively high antioxidant activity will be able to reduce the level of MDA better in the athletes after 5 km running.

It is advisable for those responsible for providing athletes’ meal to consider glycemic indexes and composition of antioxidants in the athletes’ diet. It is recommended for those who are active in sports to consume low IG food with higher antioxidant composition. This will be able to improve endurance and performance and to prevent exercise-induced oxidative stress.

REFERENCES

