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ABSTRACT 
 
In Indonesia, extensive tropical peatland has been facing land 
degradation due to deforestation and drainage canal 
construction. Such activities lead to the decrease of 
groundwater level (GWL), accelerating the peat 
decomposition, followed by peatland subsidence. This study 
addresses to estimate a three-year (from Jan. 2018 to Jan. 
2020) tropical peatland subsidence over Kalimantan, 
Indonesia, using the time-series interferometric synthetic 
aperture radar (TInSAR) technique by Sentinel-1A. TInSAR 
analysis revealed the apparent large displacement found in 
2019 due to a significant decline of GWL caused by positive 
Indian-Ocean dipole mode (IOD) event compared to other 
years. Furthermore, we employed GWL derived from 
satellite-based remote sensing data to investigate the 
relationship between subsidence and GWL and showed a 
mutual relationship.  

Index Terms— Tropical peatland, InSAR, Groundwater 
table level, Sentinel-1 
 

1. INTRODUCTION 
 
Tropical peatland plays a critical role in carbon cycling, 
hydrology, and biodiversity [1]. It is located mainly in the 
Southeast Asia region. Indonesia alone contains 47% of the 
global area of tropical peatland [2]. It contributes to terrestrial 
carbon storage in aboveground biomass and underlying peat 
soil [3]. At present, however, human activities such as 
deforestation, an agricultural expansion for oil palm and pulp 
tree, and resource exploitation, cause a severe negative 
impact on the tropical peatland ecosystem last three decades 
[4]. Because those land transformation activities increased 
the number of drainage canals, the large area of tropical 
peatland has been drained, resulting in decreased 
groundwater level (GWL). As a result of GWL decrease, peat 
microorganism oxidation (microbial decomposition) is 
accelerated, and massive carbon is released from drained 

peatland. Therefore the site hydrology management to rewet 
peatland by increasing GWL as the restoration activity is now 
undertaken to mitigate further carbon dioxide release [5].  

The carbon loss due to peat decomposition leads to 
peatland subsidence. Therefore the measurement of 
subsidence possibly estimates carbon loss, although there are 
some uncertainties such as subsidence caused by compaction, 
shrinkage, consolidation, and fire [6]. Furthermore, the peat 
subsidence rate is crucial for assessing the peatland 
restoration activity because of the strong mutual relationship 
between GWL and subsidence [7]. 

Recent efforts to estimate the large area tropical peatland 
subsidence monitoring is centered on the use of L-band 
PALSAR (ALOS) and PALSAR-2 (ALOS-2) synthetic 
aperture radar (SAR) images with time-series interferometric 
SAR (TInSAR) approach [8], [9]. Although L-band SAR 
observation is suited for the tropical area covered by 
vegetation, the temporal sampling of those sensors is 
relatively sparse, and the use of the PALSAR dataset does not 
reflect the current subsidence status. On the other hand, 
recent Sentinel-1 data provides C-band SAR images with 12-
day time intervals over the study area; hence, near-real 
continuous observation is possible. Nonetheless, the 
difficulty of C-band InSAR measurement for tropical regions 
is temporal decorrelation due to vegetation cover; thus, 
reliable and stable pixels are limited to open areas and areas 
with sparse vegetation cover. 

This study aims to estimate a three-year tropical peatland 
displacement time series in the late 2010s (Jan. 2018- Jan. 
2021) over Kalimantan, Indonesia, with dense temporal 
sampling by Sentinel-1. Kalimantan, the Indonesia side of 
Borneo Island, is one of the key areas for tropical peatland, 
which has been seriously affected by human and climate 
change impacts [10]. In Kalimantan, peatlands are mainly 
distributed lowland areas along the coastlines of Borneo 
Island (see the peatlands distribution in Fig. 1). In total, 
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around 4.79 million ha of tropical peatland spread out in 
Kalimantan [10].  

This study further investigates the correlation of spatio-
temporal patterns between estimated peatland displacement 
and GWL derived by satellite-based remote sensing dataset 
[11].  
 

2. METHODOLOGY 
 

2.1. Time-series InSAR 
 
Differential InSAR was realized by measuring the phase 
difference between two complex SAR images by repeat-pass 
observation. On the other hand, TInSAR requires a large 
number of SAR images in the same region at different times. 
Furthermore, it processes only stable (and thus reliable) 
pixels in terms of temporal scattering properties defined by 
the time-series analysis of scattering responses, named 
coherent scatters (CSs) in this study. The displacement time-
series estimation requires the stack of unwrapped 
coregistered interferograms.  

In this study, we employ two open-source software: the 
stack sentinel processor within ISCE2 
(https://github.com/isce-framework/isce2) for the generation 
of interferogram stack [12] and Mintpy 
(https://github.com/insarlab/MintPy) for displacement time-
series estimation [13]. We processed a 3-year Sentinel1-A 
single look complex (SLC) data (C-band center frequency: 
5.405GHz) acquired by the Copernicus Programme satellite 
constellation conducted by the European Space Agency 
(ESA) from Jan. 2018 to Jan. 2021. Observation mode is 
Interferometric Wide (IW) Swath mode. We use VV 
polarization for displacement estimation. We multi-look each 
interferogram by 23 in range (100m resolution) and 7 (100m 
resolution) in the azimuth direction, respectively, and apply 
the Goldstein filter with a strength of 0.5. Interferograms are 

paired with its three nearest neighbors back in time to limit 
the maximum temporal baseline 36-day. In Mintpy, a 
reference pixel is set at the Global Navigation Satellite 
System (GNSS) observation position installed by the 
geospatial information agency (BIG), Indonesia (shown in 
Fig. 1). We apply the weighted least squares inversion 
approach to a stack of unwrapped interferograms in order to 
estimate raw phase time-series where the weights are defined 
by the inverse of the phase variance [13]. Finally, 
atmospheric phase screen (APS) caused by atmospheric 
refractivity variation is compensated by Global Atmospheric 
Models (GAMs) [14] to estimate the final APS-corrected 
displacement time series. We use temporal coherence as the 
reliability measure (higher temporal coherence indicates less 
phase unwrapping as well as temporal decorrelation), and 
only the pixels with temporal coherence greater than 0.65 are 
defined as CSs used for final results.  

Four frames are processed over Kalimantan, Indonesia, 
spanning three years, as shown in Fig. 1. Each of them is 
given the name as Frame-1 (central Kalimantan #1), Frame-
2 (Central Kalimantan #2), Frame-3 (South Kalimantan), and 
Frame-4 (West Kalimantan), respectively.  

To adapt the dynamic surface change of tropical peatland 
in Kalimantan, we divide the three-year time-series SAR 
dataset into three single-year datasets (2018, 2019, and 2020) 
and estimate the displacement time-series each year. 
Therefore, CSs are different for each year. This processing 
strategy leads to the detection of partially coherent pixels, 
which does not last the whole time span due to surface 
condition changes, e.g., vegetation or plantation growth and 
vegetation lost due to peat/forest fire.  

Because TInSAR estimates line-of-sight (LOS) 
displacement, we convert derived LOS displacement 𝑑LOS 
into vertical displacement by 

𝑑𝑣 =
𝑑LOS

cos(𝜃inc)
, (1) 

where 𝜃inc  is the incidence angle. Note that the simple 
conversion in (1) is valid when the horizontal displacement 
relative to the reference point is negligible, i.e., the horizontal 
displacement velocity is assumed to be constant over the 
frame. We confirm this validity from Indonesian 
Continuously Operating Reference Stations (InaCORs) 
networks installed and managed by the BIG (website: 
https://srgi.big.go.id/). Furthermore, when the reference point 
indicates vertical displacement, all the pixels suffer from this 
displacement bias. We correct those biases in each frame 
using InaCORs data.   

 
2.2. Groundwater level estimation model  
 
We employ the time-series GWL estimation framework 
proposed by Takeuchi et al. [11] in this study.  The GWL in 
this method is estimated by the Keetch-Byram drought index 
(KBDI), which indicates the dryness of the soil, often used 
for drought monitoring for wildfire prevention. The approach 
in [11] further defines modified KBDI (mKBDI) computed 

 
Fig.1 Study area. Rectangles indicate the coverage of 
Sentinel-1A SAR images used in this study. White plots 
indicate the reference point that corresponds to GNSS 
observation location. The area colored by the orange 
indicates the peatland distributed area. 
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by satellite-based remote sensing products, including Global 
Satellite Map of Precipitation (GSMaP) for daily rainfall 𝑟𝑑𝑎𝑦 
(mm/day) and annual rainfall 𝑟𝑦𝑒𝑎𝑟 (mm/year) as well as 
MTSAT IR1 and IR2 for maximum daily land surface 
temperature (𝐿𝑆𝑇𝑚𝑎𝑥), as 
𝑚𝐾𝐵𝐷𝐼 = 𝑚𝐾𝐵𝐷𝐼0 × 𝑟𝑑𝑎𝑦

+ 0.968(800 − 𝑚𝐾𝐵𝐷𝐼0) exp(0.486𝐿𝑆𝑇𝑚𝑎𝑥)
1 + 10.88 exp(−0.44𝑟𝑦𝑒𝑎𝑟)  ,        (2) 

where 𝑚𝐾𝐵𝐷𝐼0  is an initial value determined by in-situ 
GWL. The empirical relationship with 𝑚𝐾𝐵𝐷𝐼 finally 
estimates GWL (m), as 

𝐺𝑊𝐿 = −0.0045 × 𝑚𝐾𝐵𝐷𝐼. (3)  
 

3. RESULTS 
 

We show displacement velocity results of 2018, 2019, and 
2020, respectively, in Fig. 2 and the corresponding year of 
mean GWL map averaged from Jan. 1st to Dec. 31st in Fig. 
3. The obtained displacement results indicate overall 
subsidence over peatland distributed areas. The results 

especially show larger subsidence in 2019 compared to other 
years. The severe drought recorded in 2019 shown in Fig. 3 
due to the positive Indian-Ocean dipole mode (IOD) is the 
plausible reason for larger subsidence in 2019 and this 
draught induces many peat-fire events. Peat lost due to those 
fire events may also be a plausible reason although no 
validation is performed in this study yet.  

The east part of Frame-4 in Fig. 2 (d)–(f) reveals a 
decreased trend of CSs from 2018 to 2020. This area 
corresponds to the oil palm plantation area; hence, the CSs 
lost might be caused by oil palm growth. Although we are not 
able to get CSs over this area for 2020, our TInSAR approach 
gives us displacement results for 2018 and 2019. Note that 
those partially CSs are rejected when all the three-year 
datasets are processed simultaneously with the same temporal 
coherence threshold.  

This study investigates the spatial correlation between 
GWL and vertical displacement over peatland. For this 
purpose, the scatter plots of the mean GWL versus the 
vertical displacement velocity over peatland are derived for 
each year, shown in Fig. 4 with corresponding correlation 

 
Fig.2 Vertical displacement velocity derived by series of Sentinel-1A SAR images. A hatched area colored by orange 
indicates peatland distributed area. (a) – (c) Results over the black solid outline in Fig. 1. (d) – (f) Results over the 
black dashed outline in Fig. 1. (a), (d) 2018. (b), (e) 2019. (c), (f) 2020.  
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Fig.3 Estimated mean GWL over Kalimantan, Indonesia. (a) 2018. (b) 2019. (c) 2020.  
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coefficient r values. Although a positive correlation higher 
than 0.2 (𝑟 = 0.23) is found in the 2018 dataset, 2019 and 
2020 show a low correlation. Further analysis with GWL 
taking into account peatland degradation conditions such as 
the density of drainage canal and land-use and land-cover is 
required.  

Furthermore, the time-series of GWL and vertical 
displacement at a single point (lat./long: -2.23/113.825) near 
Palangkaraya city within Frame-1 is displayed in Fig. 5 as an 
example. Vertical displacement in Fig. 5 indicates a seasonal 
displacement pattern where the subsidence starts at the 
beginning of the year while the uplift starts around September. 
Fig. 5 also reveals a similar temporal behavior between 
vertical displacement and GWL, implying that the seasonal 
pattern of peatland displacement is closely related to GWL 
temporal behavior.  
 

4. CONCLUSION 
 

This study aims to estimate the time-series displacement of 
tropical peatland in Kalimantan, Indonesia using a series of 
Sentinel-1 images. The TInSAR results show more 
significant subsidence in 2019 due to severe drought. The 
analysis with estimated GWL shows a similar seasonal 
temporal pattern between displacement and GWL, implying 
the mutual relationship.  
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Fig.4 Scatter plots of the mean GWL versus vertical 
displacement velocity. Correlation coefficient values 
for each plot are drawn at the top of each figure. 
Color represents the density of plots (the number of 
plots for each figure is restricted to 10,000 for the 
clear visualization purpose). (a) 2018. (b) 2019. (c) 
2020. 
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Fig.5. The time-series of estimated GWL and vertical 
displacement at a single point (lat./long: -
2.23/113.825) near Palangkaraya city within Frame-1.   

 


