The 63rd Autumn Conference of the Remote Sensing Society of Japan

The 63rd Autumn Conference of the Remote Sensing Society of Japan will be held as below. The details will be updated appropriately.

1. Date

21 - 22 November, 2017

2. Venue

Rakuno Gakuen University Address: 582, Bunkyodai-Midorimachi, Ebetsu, Hokkaido 069-8501, Japan Access

3. Registration Fee:

- Member 5,000 Yen, Student Member 2,000 Yen, Non-Member 7,000 yen, including a CD-ROM of Proceedings. (Registration fee of the presenters of Special session, the members of Transdisciplinary Federation of Science and Technology, Korean Society of Remote Sensing or Chinese Society of Photogrammetry and Remote Sensing are as same as the Member and Student Member fees)
- Pre-payment of the registration fee is not accepted. Please pay it in cash at the reception of the conference on November 1st or 2nd.
- 5,400 Yen for a Proceedings(CD-ROM) only.
- No registration free for undergraduate and graduate students to attend sessions only (no proceedings).
- The Registration Fee does not include the fee of the Banquet which will be held on the 1st November, after completing sessions. The Banquet Fee is 5,000Yen (2,000Yen for student). You can pay the Banquet Fee with the Registration Fee in cash only at the reception of the conference. Or only the Banquet Fee are payable at the starting time of the Banquet.

4. Special Session

The application for special session plan had been closed. The following 4 special sessions are pland in RSSJ63.

- Role of remote sensing on terrestrial ecosystem studies
- Coastal and lake optics -Before the launch of SGLI
- Ideason for Application of Remote Sensing in Agriculture
- Advancement in Snow & Ice Remote Sensing

5. Registration for Presentation and Paper Submission:

Registraton for Presentation has been closed.

6. Time Table and Programs

You can download the Time Table and Programs from the following links.

Time Table (Update: Nov. 16)

Program (Update: Nov. 16)

7. Note for Oral presentation

- The total of 15 min. for an oral presentation including discussion. A first bell is at 8 min, and second bell is at 10 min. to complete presentation.
- Oral presenters need to bring and use your own computers for presentation. A PC projector will be available for your presentation.

8. Note for Poster presentation

- Poster size shall be equal or less than B0.
- Poster for Utilization session can be presented in both days. Other posters are presented in one day (Nov. 21 or 22).
- Core time for poster presentation is 40 minutes. Presenter must stay around his/her poster during his/her core time.
- Poster room is set on both 1F Lobby and 2F Lobby. Please download and check the Time Table because the relations between poster numbers and floors are described in it.

9. Other Information:

The 63rd Autumn Conference of the RSSJ – 日本リモートセンシング学会

- Boths for exhibits are available. Please contact the secretariat of RSSJ for details.
- Banquet will be held on the 21st November, after completing sessions.
- If you have any question for this conference, please e-mail to rssj-conf@rssj.or.jp .

Water • UAV (Room A, Nov. 21st (Tue.) 17:00-18:00)

A1	Time series analysis of vegetation distribution in the alpine zone using UAV O Y. Shouji, H. Oguma, and Y. Yone	3
A2	Monitoring of tea growing status and quality using drone O K. Sato, K. Matsuura, S. Shimada, and A. Sekiyama	5
A3	Semi-automated counting of roosting waterfowl using UAV imagery	7
A4	Salinity estimation method for an eutrophic water area using geostationary ocean color observation satellite O T. Fukuda, H. Higa, K. Miyashita, Y. Nakamura, and T. Suzuki	9
	Land (Room A, Nov. 22nd (Wed.) 8 : 30-10 : 00)	
A5	A slope failure type classification map for multiple simultaneous slope failure hazard assessment O I. Uchida, K. Furusho, Y. Sekine, and H. Kojima	13
A6	Study on the examination of threshold in the quick method to detect slope failure areas $\cdots \cdots \cdots$	15
A7	Relationship between microwave land surface emissivity and land hydrological variables in the Mongolia semi-arid region O N. Hirose, K. Taniguti, and I. Kaihotsu	19
A8	High spatial and high temporal resolution inundation monitoring of seasonal wetland in tropical region by satellite data fusion O C. Nishiyama, K. Nasahara, and I. Ridwansyah	21
А9	Deep Learning Based Super Resolution for Satellite Imagery	23
A10	Local climate zone classification using optical and SAR data in Tokyo	27
	Vegetation (Room B, Nov. 21st (Tue.) 8 : 30-10 : 00)	
B1	The variation and factors of plant phenology in Mongolia O Y. Sofue, I. Kaihotsu, and A. Kondoh	31
B2	Identification of Bacterial Leaf Blight disease of rice using remote sensing data O Y. Takahashi, C. Hongo, E. Tamura, G. Sigit, and B. Barus	33
B3	Assessing leaf mass per area (LMA) of deciduous species with hyperspectral reflectance O R. Sonobe and Q. Wang	35
B4	Spatial estimation of accuracy for JAXA land-use land-cover map	37
В5	Development of rephotography application for multi-temporal land cover information	
	dataset SACLAJ O J. Katagi, K. Nasahara, M. Doutsu, K. Imamura, T. Yamanokuchi, and T. Tadono	39

В6	Optimizing processes of classifying tree species with aerial imageries using CNN \cdots D. Nojima and T. Imaizumi	41
	Calibration (Room B, Nov. 21st (Tue.) 10 : 15-12 : 15)	
B7	Continuous calibration and validation of ALOS-2/PALSAR-2 O M. Sakashita, O. Isoguchi, T. Motohka, M. Shimada, and T. Tadono	45
B8	Evaluation of AMSR-E slow rotation data by using reanalysis dataO K. Imaoka and M. Kachi	49
В9	Simulated image generation in pre-launch study for the Advanced Optical Satellite	51
B10	Precision evaluation of SPOT 6/7 using IMAGINE Photogrammetry O M. Matsushita, Y. Ishioka, A. Kobayashi, H. Kuwajima, and R. Chiba	53
B11	R&D on the precise displacement measuring technique by using ground based millimeter wave radar system (Part-II) O T. Deguchi, T. Sugiyama, M. Kishimoto, T. Yamaguchi, and S. Ikegami	55
B12	Calibration and Validation of ATI-K mode in Pi-SAR X2 \cdots \bigcirc S. Kojima	57
B13	Calculation of radiometric calibration coefficients of ALOS-2/CIRC O H. Tonooka, M. Asaki, M. Sakai, A. Kumeta, and K. Nakau	61
B14	Preliminary results of lunar calibration for ASTER based on two lunar observations over 14 years ······ O T. Kouyama, S. Kato, M. Kikuchi, and F. Sakuma	63
	Atmospher (Room B, Nov. 21st (Tue.) 15 : 45-16 : 45)	
B16	Reliability evaluation of ASTER cloud mask using ensemble deep learningO J. Yamamoto and H. Tonooka	69
B17	Cloud Shadow Removal Method Using Optical Properties of Clouds O M. Nagare, E. Kaneko, M. Toda, H. Aoki, and M. Tsukada	71
B18	Examination of Landsat 8 cloud discrimination algorithm for land cover change detection	75
	Ice (Room B, Nov. 21st (Tue.) 17 : 00-18 : 00)	
B19	Study for estimation of snow depth by using DSM made by SfM method O S. Miyasaka, S. Unome, A. Tamura, Y. Ito, A. Ishizaki, and Y. Sanada	81
B20	Automatic delineation of glacial lakes by means of PALSAR-2 ····· O H. Nagai and T. Tadono	85
B21	Analysis of temporal variation of ice shelf and ice sheet on Prinsesse Ragnhild Kyst	
	O T. Yamanokuchi, K. Doi, K. Nakamura, and S. Aoki	87
B22	Proposal of iceberg detection for Antarctic region using artificial intelligence O K. Nakamura	89

System (Room B, Nov. 22nd (Wed.) 8 : 30-10 : 00)

B23	Destriping of satellite images using Deep Learning O A. Fujita, T. Imaizumi, and S. Hikosaka	93
B24	An 8-Channels FPGA-based Reconfigurable Chirp Generator for Airborne/Spaceborne CP-SAR O M.Y. Chua, J.T.S. Sumantyo, and Y.Q. Ji	95
B25	Container of computer environment for satellite image processing O Y. Iikura, N. Manago, and H. Kuze	99
B26	Optimization of observation scheduling algorithm in constellation of Remote-sensing satellites O Y. Takeo and S. Matsunaga	103
B27	Distribution of tiled Himawari-8 images O T. Nemoto and M. Kitsuregawa	105
B28	Satellite attitude determination for pushbroom scanner images based on robust image matching O R. Sugimoto, T. Kouyama, A. Kanemura, S. Kato, and R. Nakamura	107
	SAR1 (Room B, Nov. 22nd (Wed.) 10 : 15-12 : 15)	
B29	A possibility of forest fire site detection by JJ-FAST system ····· O M. Watanabe, C. Koyama, M. Hayashi, I. Nagatani, T. Tadono, and M. Shimada	113
B30	Development of Hybrid Automatic-Clustering and Neural Network for Automatic Deforestation Detection of ALOS-2 PALSAR-2 O I. E.W. Rachmawan, T. Tadono, and Y. Kiyoki	117
B31	Using meteorological forcing data to correct for seasonality-induced low-frequency SAR backscatter variations in African dry tropical forest O C. Koyama, M. Watanabe, M. Hayashi, I. Nagatani, T. Ogawa, T. Tadono, and M. Shimada	119
B32	L-band radar backscatter variation due to the Amazonian deforestationO T. Hamazaki and M. Shimada	123
B33	Identifying transplanting date of rice crop by use of Sentinel-1 data	125
B34	Identification study of cultivation/non-cultivation area on paddy rice utilizing time series analysis of ALOS-2/PALSAR-2 L-band SAR radar backscatter ······O T. Hirose and M. Shimada	127
B35	Sensitivity of ALOS/PALSAR image to vertical structures of natural and plantation forests	190
	O S. Kobayashi	129
B36	Comparison of POLSAR data of forest area and volume scattering models O K. Kurimoto and H. Kimura	131
	SAR2 (Room B, Nov. 22nd (Wed.) 14 : 30-16 : 30)	
DOF		

B37	An experiment of SAR tomography using	time-series SAR data stacks with	
	the staring spotlight mode of TerraSAR-X		135
		○ S. Kusano, S. Shimizu, D. Sango, and Y. Ishioka	

B38	Analysis of multipass airborne POLSAR data \cdots \bigcirc Y. Isobe and H. Kimura	137	
B39	Reliability Evaluation of Persistent Scatterers for Urban Monitoring by PS-InSAR O H. Toriya, K. Senzaki, and M. Tsukada	139	
B40	Change detection of the land surface in city areas from the data observed by PALSAR-2 $\cdots \cdots \cdots \cdots \cdots \odot$ T. Kanda and H. Kimura	143	
B41	Surface deformation measurement for the Kumamoto Earthquake 2016 using	145	
	The S DinSAR images observed by the ALOS-2/ FALSAR-2 \bigcirc M. Shimada, S. Yasuda, and K. Ishikawa	140	
B42	Distinction and inspection of the landslide area by the natural disaster using the airborne	140	
	O K. Tonagi and M. Shimada	149	
B43	Earthquake/Tsunami Damage Level Mapping of Urban Areas Using Full Polarimetric SAR Data … O Y.Q. Ji, J.T.S. Sumantyo, M.Y. Chua, and M.M. Waqar	153	
B44	Flood detection for the 2016 Omoto River disaster using high-resolution ALOS-2 PALSAR-2 data $\hfill \hfill \hfil$	157	
	Special Session (Ice) (Room A, Nov. 21st (Tue.) 8 : 30-10 : 00)		
S1	Sea ice monitoring by polarimetric SAR ····· O H. Wakabayashi and K. Cho	161	
S2	Satellite remote sensing of tropical glaciers and its application to water resources evaluation $$\odot$$ Y. Asaoka	163	
S3	Feasibility study of the Northern Sea Route by satellite monitoring	165	
S4	Development of VISHOP (VIsualization Service of Horizontal scale Observations Polar region) O H. Yabuki, T. Sugimura, T. Terui, and H. Enomoto	167	
S5	Possibility of snow/ice remote sensing using thermal infrared spectral characteristicsO H. Tonooka	169	
S6	Satellite data fusion for sea ice monitoring ······ O K. Cho and K. Naoki	171	
	Special Session (Terrestrial Ecosystem) (Room A, Nov. 21st (Tue.) 10 : 15-12 : 15)		
S7	Measurement and modeling of directional vertical SIF emission from multiple canopy layers	1.75	
	O T. Kato, Y. Sakai, K. Tsujimoto, H. Kobayashi, K.N. Nasahara, T. Akitsu, and H. Muraoka	175	
S8	Prediction of forest GPP using hyper-spectral images ······ O K. Yoshikawa, K. Takagi, T. Yazaki, T. Hirano, R. Ide, H. Oguma, Y. Hirose, and J. Kurihara	177	
S9	Forest biomass map development using ALOS-2/PALSAR-2 time-series data O M. Hayashi, T. Motohka, and Y. Sawada	179	

S10	Decadal forest biomass change estimated by repeated airborne LiDAR observation in northern Japan	181
	○ K. Takagi, K. Hirayama, N. Saigusa, K. Okada, R. Sameshima, and H. Oguma	101
S11	Methane dynamics in river lowland, north eastern Siberia : short term influence of extreme flooding	183
	O T. Morozumi, R. Shingubara, S. Tei, R. Fan, S. Takano, H. Kobayashi, C. T. Morozumi, R. Shingubara, S. Tei, R. Fan, S. Takano, H. Kobayashi, R. Suzuki, T.C. Maximov, and A. Sugimoto	100
S12	Usability, problems, and outlook of remote-sensing observations for the sake of evaluation of ecosystem services and biodiversity in a wide areaO.S. Nagai, H. Muraoka, T.M. Saitoh, and K. Nasahara	185
S13	Terrestrial carbon cycle studies using AsiaFlux and remote sensing data	187
S14	Climate projection by Earth system model and terrestrial remote sensing	189
	Special Session (Lake) (Room A, Nov. 21st (Tue.) 15 : 45-16 : 45)	
S15	GCOM-C/SGLI Ocean product and its validation plan O M. Toratani, H. Murakami, J. Ishizaka, T. Hirawake, T. Hirata, K. Suzuki, H. Kobayashi, H. Higa, T. Isada, Y. Sakuno, K. Ogata, A. Tanaka, A. Fujiwara, H. Fukushima, and S. Saitoh	193
S16	A Novel Chlorophyll-a Retrieval Technique in Highly Turbid Water Using Multi-Algorithm Indices with Look-Up Table O S.I. Salem, H. Higa, K. Komatsu, and K. Oki	195
S17	The possibility of GCOM-C/SGLI for eutrophic water areas monitoring O H. Higa, Y. Sakuno, and M. Toratani	199
S18	Expectation for environmental monitoring of brackish lake group by SGLI ······ O Y. Sakuno	201
	Application (Room A, Nov. 22nd (Wed.) 10 : 15-12 : 15)	
U1	Hyperspectral image classification based on boosted domain adaptation extreme learning machines…	205
U2	Vegetation classification using UAV-based hyperspectral imaging	207
U3	Road Detection From Satellite Images by Improving U-Net with Difference of Features	209
U4	Study on relationship between snow cover distribution of satellite images and dam inflow during snowmelt seasonO T. Nishihara and A. Tanise	213
U5	Discriminating landslides triggered by the Kumamoto earthquake using ALOS-2	217
U6	Semantic Segmentation in Red Relief Image Map by UX-Net	219

U7	Validation system for aerosol characteristics from GCOM-C/SGLI O R. Kudo, S. Iwasaki, S. Mukai, and B. Holben	221
U8	Reconnaissance Observations for Plum Pox Virus Detection using Remote Sensing	223
	Application (Poster) (Room P, Nov. 21st (Tue.), 22nd (Wed.) 13 : 00-14 : 20)	
U9	Evaluation of Thin Cloud Removal Method Using Ship Detection O T. Toizumi, M. Nagare, E. Kaneko, and Y. Senda	227
U10	Tangible visualization of the regional environment information by spatial observation/analysis data to assist recovery from disaster	231
U11	Automatic detection for geologic circular features from digital terrain model and spectrometric images using Rotational Pixel Swapping Method O S. Yamamoto, T. Matsunaga, R. Nakamura, Y. Sekine, N. Hirata, and Y. Yamaguchi	233
U12	Detection of the landslides for The 2016 Kumamoto Earthquake O A. Ito, S. Matsumoto, J. Miyamoto, and M. Kinoshita	235
	Poster Session (1) (Room P, Nov. 21st (Tue.) 13 : 00-14 : 20 (P1)-(P36)) (Core Time : Odd numbers 13 : 00-13 : 40/Even numbers 13 : 40-14 : 20)	
P1	Urban Thermal Environment by Himawari-8 in the Day and Night Time	239
P2	Daily change of earth surface temperature in autumn using Himawari-8/AHI data	241
P3	Understanding the actual condition of urban thermal environment by airborne remote sensing and mobile observation—Regarding the effect of the sun shade of a high-rise building—O K. Chen, T. Asawa, and H. Oshio	243
P4	Emissivity measurement test of three-band radiation thermometer in Alkali Lake, NV, USA O T. Murofushi and H. Tonooka	245
P5	Applicability of Social Media Data to the Analysis of the Air Temperature Reduction Caused by Pervious Surface Distributions O K. Higashinaka, H. Uematsu, and K. Kumagai	247
P6	Inverse estimation of air temperature distribution in urban and built spaces using an infrared spectroradiometer O T. Asawa, R. Tsurumi, and H. Oshio	249
P7	Validation of hotspot detection and temperature retrieval by nighttime Landsat 8 OLI data O S. Kato, T. Kouyama, and R. Nakamura	251
P8	Daytime and nighttime land surface temperature distribution in central Tokyo by ground observation and LANDSAT thermal infrared data······O Y. Nakayama O Y. Nakayama	253
P9	Increase in hazard risk and its adaptation of agriculture in Myanmar O T. Sakai, K. Kawamura, S. Uchida, and T. Matsunaga	255

P10	Combining and visualizing lithological indices derived from ASTER data and topography from DEMO K. Kurata, R. Hirai, S. Kodama, and Y. Yamaguchi	257	
P11	Discrimination of minerals with absorption features at around 2.35μ m by using the ASTER VNIR and SWIR data	259	
	○ R. Hirai, K. Kurata, S. Kodama, and Y. Yamaguchi	200	
P12	Mineral identification by combining multispectral imagery and surrounding hyperspectral imagery … O A. Hirai and H. Tonooka	261	
P13	Difference analysis of land cover in Sumatra tsunami disaster area by high resolution satellite remote sensing at the two different time period ······ O K. Yoshihara and H. Hashiba	263	
P14	Examination for extraction of damaged buildings for the Kumamoto Earthquake in 2016 using high resolution satellite image O M. Sonobe, H. Hashiba, and K. Marumoto	265	
P15	Reliability prediction of building height estimation by shadow analysis of a high-resolution satellite image and 3D modeling	267	
P16	Evaluating the Relative Importance of Climate Variation and Livestock Grazing on Grassland Degradation in Mongolia ······ O X. Zhou and Y. Yamaguchi	269	
P17	Canopy conductance index for estimating gross primary production ······ O K. Muramatsu	273	
P18	Monitoring of Japanese Oak wilt OK. Muramatsu, Y. Sakai, and K. Matsui	275	
P19	Utility validation of a stem volume estimation model using airborne LiDAR data ······ O Y. Awaya	277	
P20	Validating a Global Satellite Product of Forest Canopy Height in Boreal Forests by Literature Survey O Y. Wei and H. Kobayashi	279	
P21	Determination of bamboo forest distribution in Keihanna area using multi-temporal Sentinel-2 satellite imageries-1 O F. Ochiai, N. Soyama, K. Muramatsu, and M. Daigo	281	
P22	Long-term monitoring of tundra lake ice using SAR data······ O N. Maezawa, K. Nakamura, and H. Wakabayashi	283	
P23	Study on deep learning applied to coniferous tree classification using PALSAR data O T. Yoshimura, K. Nakamura, M. Watanabe, K. Ouchi, and H. Wakabayashi	285	
P24	Trade-off analysis between classification accuracy and training data selection on SAR ATR using CNN ··································	287	
P25	Autofocus with Phase-Based Area Selection for Airborne SAR Imaging	291	

P26	Comparison between urbanization index and ALOS-2/PALSAR-2 Data at the cities affected by earthquake	295	
	○ K. Fukushima, Y. Uchida, S. Aoyama, K. Iwashita, and T. Sugimura	200	
P27	Estimation of tsunami damage caused by the Great East Japan Earthquake using ALOS/PALSAR data	297	
	○ M. Masumoto, A. Nonomura, and T. Tadono		
P28	Tundra lake ice monitoring by Sentinel-1 C-band SAR data····· O K. Motohashi, K. Nakamura, and H. Wakabayashi	301	
P29	Estimating snow line of a tropical glacier by C-band SAR data	303	
P30	Estimating the three-dimensional surface structures of Hakone Volcano (Owakudani) from the multiple-view images of an airborne sensor (ARTS-SE) ····································	305	
P31	Measurement of a building vibration and small displacement by dual VirA······O H. Nohmi	307	
P32	Development of Object-based Land Category Change Detection Methodology OL. Zhu and T. Furuichi	309	
P33	Geolocation accuracy evaluation of high accuracy ortho products from SPOT 6/7	311	
P34	Analysis of PALSAR-2 full polarimetric data acquired over agricultural area on paddy rice earing stage in the Sendai Plain ······ O C. Yonezawa	313	
P35	Multi-Temporal Change Detection using Interferimetry SAR in Kelok Sembilan West Sumatra O P. Razi, J.T.S. Sumantyo, D. Perissin, and K.N. Urata	315	Pakhrur Razi
P36	Feature analysis of the coherence of TerraSAR-X imageries using the fixed ground objects O T. Nonaka, T. Asaka, and K. Iwashita	317	
	Poster Session (2) (Room P, Nov. 22nd (Wed.) 13 : 00-14 : 20 (P37)-(P72)) (Core Time : Odd numbers 13 : 00-13 : 40/Even numbers 13 : 40-14 : 20)		
P37	Comparison of the radargrammetric and interferometric SAR height measurements using	201	
	O J. Uemoto, S. Hishinuma, K. Ito, T. Aoki, and S. Uratsuka	321	
P38	Mapping of talc deposits using ASTER data ······ O S. Kodama and Y. Yamaguchi	323	
P39	Application of group work for introduction education to remote sensing learner ······ O T. Yamada	325	
P40	Plant growth monitoring in vineyard based on proximal remote sensing	327	

P41	Study of Tie Points to use for UAV image processing for measuring unevenness in agricultural fields	329
	○ N. Ishitsuka, T. Sakamoto, and N. Iwasaki	
P42	Paddy-rice monitoring using Phantom 4 Pro —investigation of photographing time and camera settings— O T. Sakamoto	331
P43	Estimating phenological information of U.S. crops using Shape Model Fitting method O T. Sakamoto	, 333 ,
P44	Study on a long-range coastal erosion in Gulf of Thailand	335
P45	Estimation of rice growth and yield by assimilating drone image into crop modelO M. Maki, K. Homma, and C. Hongo	337
P46	Intercalibration of NDVIs for reduction of the wavelength effect based on soil isolines O K. Taniguchi, Y. Adachi, K. Obata, and H. Yoshioka	339
P47	Development of a simple method for tea leaf growth monitoring by using drone attached camera modification \odot K. Matsuura, K. Sato, S. Shimada, A. Sekiyama, and N. Hori	341
P48	The Study of the Influence of the Amount of Plant Foliage on Rice Plant Height Estimation using Laser Scanner Measurement Data ······ O S. Goya and K. Takahashi	343
P49	Evaluation of global vegetation structure datasets to be introduced to a global land process model \cdots \bigcirc H. Kamiya, K. Oki, H. Kim, and H. Kobayashi	345
P50	A study on measurement error of topography using cross-track interference SAR O A. Nadai, J. Uemoto, S. Kojima, T. Umehara, T. Kobayashi, and T. Matsuoka	347
P51	Stereo vision-based radargrammetry using airborne SAR images ····································	351
P52	Interpretation of flooded areas of Tokorogawa River by PALSAR-2 dataO S. Aoyama and Y. Uchida	353
P53	Radiometric evaluation of visible and near-infrared camera system mounting on small UAV O R. Kakubari, K. Nakamura, and H. Wakabayashi	355
P54	Optimization Study of Gimbal-Mounted Drone System for Hyperspectral Imaging O Y. Takeuchi, T. Ito, S. Satori, T. Yoshida, T. Otsuka, H. Inou, and R. Mitsuhashi	357
P55	Time-series evaluation of ASTER/TIR calibration accuracy in a low temperature range O M. Asaki, H. Tonooka, and F. Sakuma	359
P56	Radiometric Cross-Calibration for Synergistic Application of Multiple Sensors - A Case Study Using ASTER, MODIS, and ETM + - OK. Obata and S. Tsuchida	361
P57	Positional deviation of satellite images due to atmospheric refraction of light and its influence on accuracy of geometric correction	363

P58	ALOS-2 observation results and future plan O S. Sobue, T. Fukuda, T. Miyashita, H. Kamimura, O. Ochiai, and A. Noda	365
P59	Precision validation of long-term sea surface temperature of in Seto Inland Sea using MODIS data … O K. Ono and Y. Sakuno	369
P60	Sea surface salinity estimation in the center of Seto Inland Sea using Bio-Optical model with SGLI wavebands OZ. Wang and Y. Sakuno	371
P61	Estimation of seagrass bed distribution off Takehara using Landsat-8 data ······ O Y. Sakamoto and Y. Sakuno	373
P62	Study of estimation and classification methods of suspended solids using in-situ observation data in brackish waters ······ O Y. Nakayama and T. Shimomai	375
P63	A trial of current velocity estimation in the coast using Himawari-8 SST DataO N. Kurokawa and Y. Sakuno	377
P64	Comparison and Utilization of Old and New Geospatial Information in Shonan Wetland \cdots O K. Isobe, T. Sugimura, and M. Sano	379
P65	Horizontal distribution of primary production in the seas adjacent to Japan estitamted by remote sensing data OT. Kameda	381
P66	A trial of water quality observation at three lakes in Tottori Prefecture using disaster prevention helicopter – September, 2017 O Y. Sakuno, A. Maeda, A. Mori, M. Okamoto, M. Masukawa, C. Nakada, S. Ono, and A. Ito	383
P67	Validation of extraction methods of marine debris using high special resolution satellite images \cdots O T. Aoyama	385
P68	Simultaneous retrieval of surface temperature and surface emissivity from GOSAT/TANSO-FTS TIR spectra ····································	389
P69	Aerosol Extinction near the Ground Level Investigated by the Plan-Position Indicator Lidar, Slant Path Lidar and Visibility Meter O P.M. Ong, N. Lagrosas, T. Shiina, and H. Kuze	391
P70	Removing cloud noise from MODIS NDVI using time-series data ······O F. Mahmood and A. Kimura	393
P 7 1	Seasonal variation of aerosols over the Asia $$\bigcirc$ M. Nakata and S. Mukai	395
P72	Hourly trends of nighttime cloud cover observations in Chiba using a ground-based digital camera … O N. Lagrosas and H. Kuze	397

Multi-Temporal Change Detection using Interferometry SAR in Kelok Sembilan West Sumatra

○Pakhrur Razi Chiba¹, J.T.S. Sumantyo Chiba², Daniele Perissin USA³, Katia N. Urata¹

Abstract: Land changing monitoring is necessary to take on the information about the instability of the land. The information can be used as a judgment for developing an urban area. In this paper, 13 images were processed using land change detection interferometry SAR technique. Amplitude and phase information of SAR image is used as change indicator of change. The result was projected to an optical image and validated by ground survey data. There are some locations have changed which is identified as a landslide.

Keywords: abstract, captions of figures, annual meeting.

1. Introduction

In remote sensing field, Synthetic Aperture Radar (SAR) satellite data can be used for several necessities. Mainly is to monitor the changing on the earth surface. In last ten years, the multi-temporal change detection processing technique is an exciting topic in remote sensing research. By using the multi-temporal acquisition satellite data, the changing in earth surface due to earthquake [1], landslide [2], subsidence [3],[4] can be observed from time to time. Therefore, this technique is useful for analyzing the characteristic of these phenomena occurring in the past.

In this paper, we investigate the changing of land in the mountainous area using multitemporal SAR image. The result was confirmed by a ground survey which is the areas was identified as a landslide.

2. Area of Research

The area of research is around Kelok Sembilan, Lima Puluh Kota district, West Sumatra Indonesia located in between two steep of hills. The slope of both sides of the hill approximately is 75^{0} . The morphology of the area shown in Fig.1.

Fig. 1. Morphology area of research

3. Satellite Dataset and Multi-Temporal Change Detection Processing

a. Dataset

The satellite data used in this work is acquired by ALOS PALSAR, which taken from July 2007 to

November 2010 over the area of interest. Total 13 scenes which ascending track with Fine Double Beam (FDB) mode, single polarization horizontal transmit and vertical receive (HV) [5]. The area of covered is 75x75 km² with 10 m resolution. The dataset is shown in Table 1.

TABLE 1.
SATELLITE ALOS PALSAR DATASET

No	Acquisition Date (DD/MM/YYYY)	Mode	Normal Baseline, B_n (m)	Temporal Baseline <i>B_t</i> ,(Days)
1	03072007	FBD	74	-460
2	18082007	FBD	-24	-414
3	03102007	FBD	211	-368
4	20052008	FBD	259	-138
5	05072008	FBD	155	-92
6	20082008	FBD	626	-46
7	05102008	FBD	0	0
8	08072009	FBD	758	276
9	08102009	FBD	-134	368
10	11072010	FBD	272	644
11	26082010	FBD	82	690
12	11102010	FBD	120	736
13	26112010	FBD	351	782

b. Multi-Temporal Change Detection Processing

Fundamental step pre-processing for change detection is co-registration [6]. It is for ensuring the range and azimuth geometry of all scenes are same. The flowchart of SAR data processing presented in Fig. 2.

Fig. 2. The SAR Processing Flowchart

In Fig.2. Both SAR master and slave image input are in Single Look Complex (SLC) format [7]. After co-registration processing, the image was continuing to preliminary geocoding for correcting the initial orbit offset. Then followed by applying the change detection technique for producing the numbers pairs of the image changing. Afterward, every pairs image was calculated to produce the cumulative change for all scene. Finally, the result was geocoded into google earth.

4. Result and Discussion

Fig.3 represented the changing of the area of research for each pair master and slave image. There is 12 pair of images for acquisition time from July 2007 to November 2010.

Fig. 3. The Changing of Area of Research

There are several locations has detected changing in each pair image. The cumulative change in 4 years is shown in Fig. 4.

Fig. 4. The Cumulative Change Area of Research

In Fig. 4. The white circle indicates a landslide area based on the survey carried out in September 2016. There are some changed areas that cannot be observed because some of them are located on the high hills mountainous. Based on the analyzing, multi-temporal change detection technique is not work perfectly for detection small area changing.

5. Conclusions and Future Work

The multi-temporal change detection technique is satisfactory for determining the instability location in the area of interest. The next research is studying the factor and characteristic of the changing on instability location.

6. Acknowledgment

The authors would like to thank all who have helped in this research work, including, but not limited to, Josaphat Microwave Remote Sensing Laboratory, Chiba University Excellent International Student Scholarship, JAXA Japan, SARPROZ, NASA, BNPB, BMKG.

¹ Student : CEReS, Chiba University.

⁽Address: CEReS, Chiba University, Chiba, Japan.)

⁽Contact: Tel; 080-8857-8694, E-mail; fhrrazi@fmipa.unp.ac.id ² Member : CEReS, Chiba University

⁽Address: CEReS, Chiba University (Address: CEReS, Chiba University, Chiba, Japan)

⁽Contact: Tel; +81(0)43 290 3840, E-mail; jtetukoss@faculty.chiba-u.jp)

³ Member : Civil Engeenering, Purdue University

⁽E-mail; perissin@purdue.edu)

7. References

- U. Wegmüller, T. Strozzi, and C. Werner, "Earthquake damage mapping using the coherence of persistent scatterers," *Eur. Sp. Agency, (Special Publ. ESA SP*, vol. SP-731, no. March, pp. 1–4, 2015.
- [2] P. Razi, J. T. Sri Sumantyo, D. Perissin, A. Munir, "Persistent Scattering Interferometry SAR based Velocity and Acceleration Analysis of Land Deformation: Case Study on Kelok Sembilan Bridge," Proc. 11th Int. Conf. Telecommun. Syst. Serv. Appl. (TSSA), Lombok, Indonesia, 2016.
- [3] D. Perissin, Z. Wang, and T. Wang, "The SARPROZ InSAR tool for urban subsidence/manmade structure stability monitoring in China," ... 34th Int. Symp. Remote ..., 2011.

- [4] P. Iahs, A. Ferretti, D. Colombo, A. Fumagalli, F. Novali, and A. Rucci, "InSAR data for monitoring land subsidence : time to think big," pp. 331–334, 2015.
- [5] JAXA, "ALOS/PALSAR Level 1.1/1.5 product Format description," Japan.
- [6] A. Ferretti, A. Monti-Guarnieri, C. Prati, and F. Rocca, "InSAR principles: Guidelines for SAR Interferometry processing and interpretation," *ESA Publ.*, pp. 1–40, 2007.
- [7] D. Perissin, "Interferometric SAR Multitemporal Processing: Techniques and Applications Interferometric SAR MultiTemporal processing," no. April, 2017.

Multi-Temporal Change Detection using nterferometry SAR at Kelok Sembilan

West Sumatra

1RSL

0

Land changing monitoring is necessary to take on the information about the instability of the land. The information can be used as a decision in developing an urban area and building a construction. In this paper, 13 images were processed using land change detection interferometry SAR technique. Amplitude and phase information of SAR image is used as indicator of land changing. The result was projected onto an optical image and validated by ground survey data. There are some locations have changed which is identified as a landslide. Keywords: Change Detection, Interferometry SAR, Multi-Temporal, Kelok Sembilan

0 1. Introduction

Synthetic Aperture Radar (SAR) satellite data can be used for several necessities. Mainly is to monitor the changing on the earth surface. In last ten years, the multi-temporal change detection processing technique is an exciting topic in remote sensing research. By using the multi-temporal acquisition satellite data, the changing in earth surface due to earthquake [1], landslide [2] , subsidence [3],[4] can be observed from time to time. Therefore, this technique is useful for analyzing the characteristic of these phenomena occurring in the past

In this paper, we investigate the changing of land in the mountainous area using multitemporal SAR image. The result was confirmed by a ground survey which is the areas was identified as a landslide

2. Satellite Dataset The satellite data used in this work is acquired by ALOS PALSAR, which taken from July 2007 to November 2010 over the area of interest. Total 13 scenes which ascending track with Fine Double Beam (FDB) mode, single polarization horizontal transmit and vertical receive (HV) [5]. The area of covered is 75x75 km² with 10 m resolution. The dataset is shown in Table 1.

lo	Acquisition date	Mode	Normal Baseline (B _n), (m)	Temporal Baseline (B.,),(Day)
1	20070703	FBD	74	-460
2	20070818	FBD	-24	-414
3	20071003	FBD	211	-368
4	20080520	FBD	259	-138
5	20080705	FBD	155	-92
6	20080820	FBD	626	-46
7	20081005	FBD	0	0
8	20090708	FBD	758	276
9	20091008	FBD	-134	368
0	20100711	FBD	272	644
1	20100826	FBD	82	690
2	20101011	FBD	120	736
.3	20101126	FBD	351	782

3. The Area of Research The area of research is around Kelok Sembilan, Lima Puluh Kota district. West Sumatra, Indonesia. Which is the area located in between two steep of hills. The slope of both sides of the hill approximately is 75°. The morphology of the area shown in Fig.1

4. Methodology

As change detection Information both amplitude and phase of SAR images are used. There is 12 pair of series images produces for acquisition time from July 2007 to November 2010. The steps for change detection processing as

 Student : CEReS, Chiba University. (Address: CEReS, Chiba University, Chiba, Japan.) (Contact: Tel; 080-8857-8694, E-mail; fhrrazi@fmipa.unp.ac.id
² Member : CEReS, Chiba University (Address: CEReS, Chiba University, Chiba, Japan) (Contact: Tel; +81(0)43 290 3840, E-mail; jtetukoss@faculty.chiba-u.jp) Civil Engeenering, Purdue University (E-mail; perissin@purdue.edu)

