PROCEEDING

THE INTERNATIONAL CONFERENCE ON MATHEMATICS, SCIENCE, EDUCATION AND TECHNOLOGY

ICOMSET 2015

Education, Mathematics, Science and Technology for Human and Natural Resources

October 22, 2015
Inna Muara Hotel and Convention Center
Padang, Indonesia

Published by:
Faculty of Mathematics and Science
State University of Padang
Padang, Indonesia

Address:
Faculty of Mathematics and Science
State University of Padang
Jl. Dr. Hamka Air Tawar Padang - Sumbar
The International Conference on Mathematics, Science, Education and Technology

(ICOMSET 2015)

Education, Mathematics, Science and Technology for Human and Natural Resources

October 22, 2015

Inna Muara Hotel and Convention Center
Padang, Indonesia

Organized by
Faculty of Mathematics and Science
State University of Padang
Padang, Indonesia
Organizing Committee

STEERING COMMITTEE
- Prof. Dr. Phil. H. Yanuar Kiram (Rector Universitas Negeri Padang)
- Prof. Dr. H. Agus Irianto (Vice Rector I, Universitas Negeri Padang)
- Prof. Dr. Lufri, M.Si (Dean Faculty of Mathematics and Science Universitas Negeri Padang)
- Dr. Yulkifli, S.Pd., M.Si (Vice Dean I, Faculty of Mathematics and Science Universitas Negeri Padang)

ORGANIZING COMMITTEE
- Chairman : Drs. Hendra Syarifuddin, M.Si., Ph.D
- Vice Chairman : Ananda Putra, M.Si., Ph.D
- Secretary : Yohandri, M.Si., Ph.D

EDITOR BOARD
- Dr. Rahadi Wirawan, M.Si (Universitas Mataram)
- Yuhendra, Ph.D (Institut Teknologi Padang)
- Prof. Dr. Elizar (UNP)
- Luhur Bayuaji, Ph.D (Universiti Malaysia Pahang)
- Prof. Usman Sumo, Ph.D (Univ. Indonesia)
- Dr. Jefri Marsal (Univ. Jambi)
- Dr. Yosza Dasril (Universiti Teknikal Malaysia Malaka)
- Prof. Josaphat Tetuko SS (Chiba University)
- Prof. Dr. Festiyed, M.S (UNP)
- Prof. Dr. Lufri, M.S (UNP)
- Prof. Dr. Ahmad Fauzan, M.Pd, M.Sc (UNP)
- Prof. Akrajas (UKM)
- Prof. Hadi Nur (UTM)
- Dr. Tan Ling Ling (Universiti Kebangsaan Malaysia)
- Prof. Wahyudin (UPI)
- Prof. Akhmaloka (ITB)
- Dr. Yuni Ahda, M.Si (UNP)
- Prof. Dr. Syafirizal, M.Si (UNAND)
- Prof. Dr. I Made Arnawa, M.Si (UNAND)
Contents

Messages
Rector of State University of Padang xi
Dean of Faculty of Mathematics and Science xii
Chairman of Organizing Committee xiv

Keynote Speaker

BILL ATWEH
Socially Response-able Mathematics, Science and Technology Education: xv Quality, Engagement, and Sustainability

ANDRIVO RUSYDI
New Paths For Half-Metallic And Ferromagnetic In Oxides xvi

NUR HADI
The Design of Solid Catalysts: Some Examples from Universiti Teknologi xvii Malaysia

CHAN YEE KIT
A Millimeter-Wave GBSAR for Landslide Monitoring xviii

ANANDA PUTRA
Novel Bacterial Cellulose With Well Oriented Fibrils Alignment: Synthesis and xix Characterization

Mathematics Education

ADRI NOFRIANTO
Etnomathematics (Mathematical Concepts in Minangkabau Traditional Game) 1

AKRIM
The Integration of Sosial and Spiritual Competences Curriculum 2013 in Math 5 Subject in State Junior High School of Medan

ARNELLIS, SUHERMAN, DODI VIONANDA
Statistical Analysis of the Relationship Pedagogic and Professional Capabilities 15 Results Competency Test Teacher Senior High School West Sumatra Province

EDWIN MUSDI
Development of Mathematics Instructional Model Based on Realistic 21 Mathematics Education to Promote Problem Solving Ability Junior High School Students of Padang

ELITA ZUSTI JAMAAN
Improving The Professional Competence of Elementary School Teacher 27 Through Programmed Training in Working Up A Student Sheet Based on Critical and Mathematical Thinking in Pasaman Regency
HAFIZAH DELYANA
Improved Communication Mathematical Abilities Through Implementation The Firing Line’s Strategy at VII Class of Junior High School 33

MARIAM NASUTION, RAHMATUL HAYATI, LATISMA
The Development of an Authentic Assessment in Geometric Subject which is Oriented to Problem Based Learning (PBL) 40

PIPIT FIRMANTI
The Process of Deductive Thinking of Junior High School Students in Completing Geometric Proof Based on Gender 47

RINA FEBRIANA, YUSUTRIA
Analysis Validity LKM Based Contextual Algebra Basic In STKIP PGRI Sumbar 52

ZETRIUSLITA, REZI ARIAWAN, HAYATUN NUFUS
Profile Ability Think Critically Student in Completing Mathematical Problems Based on The Level of Academic Ability 57

Mathematics

ANISWITA
Fungsi Terintegral Henstock-Kurzweil Serentak dan Unifiomly Globally Small Riemann Sums (UGSRS) dari Ruang Euclide Ke Ruang Barisan 59

HELMA, NONONG AMALITA
Estimation Actual Value Based On Output Value Tools Of A Measure Using The Inverse Regression 65

HERU MAULANA, KUNTJORO ADJI SIDARTO
Valuing Employee Stock Options (ESO) Under Employee Forfeiture Rate 71

ROSLINA, HARTONO, MUHAMMAD ZARLIS
An Overview of Methods For Increasing The Performance of Genetic Algorithm 78

SRI WAHYUNINGSIH, RAHMAT GUNAWAN
Forecasting Oil Production Using Time Series Model 83

SYAMSUL ANWAR, LONNY AFRIZALMY
Optimization of Production Planning Using Goal Programming Method (A Case Study in A Cement Industry) 90

DAHLAN ABDULLAH, HARTONO, ANGGA PRASETYA
Stock Parts Forecasting Using Least Square In Pt. Dunia Barusa Lhokseumawe 96
Physics Education

AHMAD FAUZI, FANNY RAHMATINA RAHIM, RATNA WULAN
The Effectiveness of Mechanics Handout Integrated by Volcanic Eruption Material to Creative Thinking Ability 103

AMALI PUTRA
Physics Learning Oriented Content Complexity and Cognitive Process for Improving Student Scientific Competence on High School in Padang 108

ASRIZAL, HUFRI, FESTIYED
Development of Authentic Assessment For Supporting The Inquiry Learning Model in Basic Electronics 1 Course 115

MASRIL, HIDAYATI
Development of Teaching Materials Based on Scientific Approach For Support The Implementation Of Curriculum 2013 in Senior High School 118

TANTI, MAISON
Modification of Colorado Learning Attitudes About Science Survey (Class) 125

Physics

AKMAM, IREFIA RD, SILVIA D, JEMMY ROHMANA
Optimization of Least Square Inversion Using Occam Method Dipole-Dipole Geoelectric Resistivity Data for Landslide Surface Estimation 131

ARSALI, OCTAVIANUS CAKRA SATYA, SUPARDI
Determination of System Dynamic Characteristics Based on A Serial Rc Circuit Model 139

FATNI MUFIT, MAHRIZAL, NOVIYENDRISUDIAR
Magnetic Properties and Heavy Metal Content of Leachate Sludge in Waste Landfill, Air Dingin Padang, Indonesia 144

MAHRIZAL, AHMAD FAUZI, AKMAM
Monitoring Technology Development Geoelectric Time-Lapse to Monitor The Prone to Landslides Areas in Padang Using Methods Geoelectric Time-Lapse Resistivity Inversion In Wenner And Schlumberger Configuration 150

NOVIA LIZELWATI, VENNY HARIS
Design of Experiments Set to Determine The Coefficient of Kinetic Friction on Collision of Two Objects 158

RATNAWULAN, JULIANSYAH, AHMAD FAUZI
Effect of Calcination Temperature on Phase Transformation and Crystallite Size of Granite Powder 163
YULKIFLI, YOHANDRI, RAHMAT TRIYONO, ZULPADRIANTO
Development of 2D Vibration Detector Using Fluxgate Sensor Based on Personal Computer

Chemistry Education

AFRAHAMIRYANO
Student’s Perception of Mathematics and Science Department of Biology Education Program Toward Basic Chemistry Course at The University Mahaputra Muhammad Yamin Solok

ANITA HERDA, RAYANDRA A, MAISON
Profile of Senior High School Student’s Needs for Life Skill Oriented – Chemistry

BAYHARTI, SURYELITA, INDAH HARIA UTARI
The Development of Problem Based Learning Worksheet on Reaction Rate for Senior High School Students

GUSPATNI
The Effect of E-Learning in Chemistry Learning Outcomes: A Meta-Analysis

HARYANTO
Profiles Early Generic Skill Prospective Teacher of Chemistry in Jambi University

LATISMA DJ
Design and Implementation of Chemistry Triangle Oriented Learning Media on Hydrocarbons

RATULANI JUWITA
Developing Kit and Experiment Worksheet for Electrochemistry at XII Class of Senior High School

YERIMADESI, BUDHI OKTAVIA, WILDA ZULVINA FITRI
The Development of Buffer Teaching Material In The Form of Module-Based Discovery Learning for Chemistry in Senior High School

ZONALIA FITRIZA, LATISMA DJ, MAWARDI
Analysis Of Students Misconception of Atomic Structure In Sma Adabiah Padang

ANDROMEDA, BAYHARTI, MENTARI DELIPUTRI
The Development Of Guided Inquiry-Based Worksheet For Laboratory Work On Topic Of Colloidal System For Senior High School Instruction
Chemistry

AMRIN, EDI NASRA
Trace Metals Accumulation in Vegetables From Some Areas in West Sumatera 222

ERPINA SANTI MELIANA NADEAK
Sodium – Diethyldithiocarbamate as A Complex Agent For Preconcentration and Trace Analysis of Cd(II) Based on Flow Injection Analysis 226

INDANG DEWATA, EDI NASRA
Assessment of Trace Pb (II) in Sludge From Batang Anai River’s Padang 236

PUJI ARDININGSIH, LIA DESEARTI, AFGHANI JAYUSKA
Isolation of Antibacterial Activities of The Endophytic Microbes From Asam Kandis (Garcinia Diocia Blume) 240

RAHADIAN ZAINUL, ADMIN ALIF, HERMANSYAH AZIZ, SYUKRI ARIF, SYUKRI
Photoelectrochemical Splitting Of Water By Photoelectric Induced At Carbon Surface 245

SHERLY KUSUMA WARDA NINGSIH, MIFTAHUL KHAIR, SILVI VERONITA
Synthesis and Characterization of ZnO Nanoparticles by Sol-Gel Method with Various Additives 254

SRI BENTI ETIKA, SURYELITA, DEWI RAMADHANI
Isolation and Characterization of Flavonoid From Gambier Plant Leaves (Uncaria Gambir R.) 259

SYAMSU HERMAN, AMUN AMRI
Synthesis of Copper Oxide Thin Film Via Sol-Gel Dip-Coating Route For Spectrally Selective Absorber Material 262

Biology Education

ANIZAM ZEIN
Use of Mind Map in Increasing Student Learning Activities and Results of General Biology Course in FMIPA UNP Padang 267

ERNIE NOVRIYANTI, LUFRI
Developing Authentic Assessment for Contextual Teaching and Learning Model at Animal Taxonomy Course 272

HEFFI ALBERIDA
Analyzing of Natural Science Teacher Understanding at Padang City About Science Literacy, Problem Solving and Scientific Approach 276
LUFRI, ARDI
Development Model Based Learning Concept, Modeling Method and Drill For Course Methodology Research

M. HAVIZ
The Modern Instructional Design on Educational Research: How to Use the Adaptive Systems on Instructional of Biology

MUHYIATUL FADILAH, HELENDRA, FITRI ARSIH
Identifying The Misconceptions Relate to Evolution Material Presented in Students Biology Text Book For XII Class

RAHMAWATI D
Biology Education Student's Acceptance of Evolution Theory Before Learn Evolutionary Course in Biology Department

RELSAS YOGICA, RISTIONO
Learning Style of First-Year Biology College Students in State University of Padang

ZULMARDI, ARNELLIS, ARDI
Deepening Matter and Training for Competence Professional and Pedagogic Teachers of Mathematics and Science at Junior and Senior High School in District Dharmasraya of West Sumatra-Indonesia

Biology

ARMEN
Fish Farming of Nila to Against The Population Reliance of Biological Resources at Kerinci Seblat National Park (Tnks) in Nagari Limau Gadang Lumpo, Pesisir Selatan

DES M
Pollen Morphometry of Euphorbia Mili Moulins Varieties

FIFI YULIA
Management Analysis on Plants Morphology Lab Work in Basic Biology Laboratory of Stain Batusangkar

GUSTINA, INDRATI, RUTH RIZE PAAS MEGAHATI, ANNIKA MAIZELI
Identification of Amylase-Producing Bacteria From The Soil of Waste in Padang

MADES FIFENDY
Bacteriological Test Of Some Cooked Grinding Seasonings In The Pasar Raya Padang

SYAMSU RIZAL
Tetra Primer-Arms-Pcr Construction to Detect Snp Rs290487 Tcf7l2
VIOLITA, TRIADIATY
Floristic Diversity, Abundance and Association of Tree Plant in Bukit 12 National Park Jambi.

Technology and Other

AL AL, SEPANUR BANDRI
1-Phase Inverter Trigger Pulse Control Design Based Arduino microcontroller in The Hybrid Power Plant Regulator Systems

BUDI UTAMI FAHNUN, LELY PRANANINGRUM, WINOKO DAVID CHRISTOFEL
Geographical Information System Handycraft Application Based on Mobile in Depok City

CHOIRUL HUDA SUBARYANTO, RENDY WIKRAMA WARDANA
The Technique Of Variable Projection and Rules of Temple Area in Operation of Series

DEDY HARTAMA, JALALUDIN
Model Rules of Student Academic Achievement With The Algorithm C 4.5

ERWINSYAH SATRIA
Improving Students Activities and Learning Outcomes in Natural Science in Class V by Using Somatic Auditory Visual Intellectual (SAVI) with Science Kit Seqip in SD Negeri 25 Seroja Lintau

HASANUDDIN HENDRI NURDIN, WASKITO, SYAHRUL
Design and Constructions of Simple Distillations Unit With Reflux Column Model For Cane Tibarau (Saccharum Spontaneous Linn) Bioethanol Productions

HENDRI NURDIN HASANUDDIN, IRZAL, PURWANTONO
Analysis of Behavior Deflection Composite Particle Board Cane Baggase Using Adhesives Tapioca

LELYA HILDA, SYAFIRUDDIN, REPLITA
Integrated Farming, Creating Zero Waste Environment

RINA SUGIARTI, ANITA WASUTININGSIH, EGA HEGARINI
Geographic Information System Web-Based on Creative Industry in West Sumatera

SALMAINIS
Development Of Mathematics Instructional Model Based Assisted Contextual Ict In High School
SYUHENDRI
Physics Education Students’ Conceptions On Active Forces and Action-Reaction Pairs
Ladies and Gentlemen,

It give me great happiness to extend my sincere and warm welcome to the participants of the International Conference on Mathematics, Science, Education and Technology (ICOMSET 2015). On behalf of Universitas Negeri Padang, let me welcome all of you to the conference in Padang, West Sumatra Province, Indonesia.

We believe that from this scientific meeting, all participants will have time to discuss and exchange ideas, findings, creating new networking as well as strengthen the existing collaboration in the respective fields of expertise. In the century in which the information is spreading in a tremendous speed and globalization ia a trend. Universitas Negeri Padang must prepare for the hard competition that lay a head. One way to succeed is by initiating and developing collaborative work with many partners from all over the world. Through the collaboration in this conference we can improve the quality of our researches as well as teaching and learning process in mathematics, science and technology.

I would like to express my sincere appreciation to FMIPA UNP and organizing committee who have organized this event. This is a great opportunity for us to be involved in an international community. I would also like to extend my appreciation and gratitude to keynote speakers and participants of this conference for their contribution to this event.

Finally, I wish all participants get a lot of benefits at the conference. I also wish all participants can enjoy the atmosphere of the city of Padang, West Sumatra.

Thank you very much

Prof. Dr. Phil. Yanuar Kiram
Rector
Message

from the

Dean of Faculty of Mathematics and Science
State University of Padang

Rector of State University of Padang
Vice-Dean of Faculty, Mathematics and Science
Head of Department in Faculty of Mathematics and Science
Distinguished Keynote Speakers
Organizers of this conference
Dear participants
Ladies and gentlemen

I am delighted and honored to have this opportunity to welcome you to ICOMSET 2015 - the International Conference on Mathematics, Science, Education and Technology, which is hosted by Faculty of Mathematics and Science, State University of Padang.

As the Dean of Faculty of Mathematics and Science, I wish to extend a warm welcome to colleagues from the various countries and provinces. We are especially honored this year by the presence of the eminent speaker, who has graciously accepted our invitation to be here as the Keynote Speaker. To all speakers and participants, I am greatly honored and pleased to welcome you to Padang. We are indeed honored to have you here with us.

The ICOMSET organization committee and also the scientific committee have done a great work preparing our first international conference and I would like to thank them for their energy, competence and professionalism during the organization process. For sure, the success I anticipate to this conference will certainly be the result of the effective collaboration between all those committees involved.

This conference is certainly a special occasion for those who work in education, mathematics, science, technology, and other related fields. It will be an occasion to meet, to listen, to discuss, to share information and to plan for the future. Indeed, a conference is an opportunity to provide an international platform for researchers, academicians as well as industrial professionals from all over the world to present their research results. This conference also provides opportunities for the delegates to exchange new ideas and application experiences, to establish research relations and to find partners for future collaboration. Hopefully, this conference will contribute for Human and Natural Resources.

I would like to take this opportunity to express my gratitude to all delegates and sponsors for their full support, cooperation and contribution to the ICOMSET 2015. I
also wish to express my gratitude to the Organizing Committee and the Scientific Committee for their diligence. The various sponsors are also thanked for their kind support.

In closing, I realize that you are fully dedicated to the sessions that will follow, but I do hope you will also take time to enjoy fascinating Padang, with its tropical setting, friendly people and multi-cultural cuisine.

I wish the participants a very fruitful and productive meeting and with that. Finally, we respectfully request the Rector of State University of Padang to open the ICOMSET 2015 officially.

Thank you,

Faculty of Mathematics and Science
Prof. Dr. Lufri, M.S.
Message

from the

Chairman of Organizing Committee

Firstly, I would like to say welcome to Padang Indonesia. It is an honor for us to host this conference. We are very happy and proud because the participants of this conference come from many countries and many provinces in Indonesia.

Ladies and gentlemen, This conference facilitates researchers to present ideas and latest research findings that allows for discussion among fellow researchers. Events like this are very important for open collaborative research and create a wider network in conducting research.

In this conference, there are about 120 papers that will be discussed from various aspects of mathematics, science, technology, education and other related topics.

For all of us here, I would like to convey my sincere appreciation and gratitude for your participation in this conference.

Thank you very much

Drs. Hendra Syarifuddin, M.Si, Ph.D
Chairman
Socially Response-able Mathematics, Science and Technology Education: Quality, Engagement, and Sustainability

Bill Atweh

ABSTRACT

In this talk I will outline an approach to the teaching of mathematics, science and technology education based on social responsibility (or Response-ability). I will argue that the primary role MSTE the development of active citizenship. I will present basic components of the Social Response-able Education approach toward developing school knowledge in meaningful way and towards achieving this primary goal. I will illustrate this approach through a project involving schools in Western Australia.
NEW PATHS FOR HALF-METALLIC AND FERROMAGNETIC IN OXIDES

Andrivo Rusydi
National University of Singapore

ABSTRACT

The search for high performance soft-magnet with high resistivity has been intense recently, driven by the strong demand in energy sector, such as energy generation, electrical motor, transformer and other energy efficient devices. Apart from hard-magnets, soft-magnets also play an important role in many engineering applications. Here, we introduce new paths to generate room temperature soft magnets with high resistivity by manipulating electronic structure of a materials. We will give example of well-known as non-magnetic materials such as TiO$_2$, ZnO, and even magnetic Fe$_3$O$_4$.
The Design of Solid Catalysts:
Some Examples from Universiti Teknologi Malaysia

Hadi Nur

Centre for Sustainable Nanomaterials, IbnuSina Institute for Scientific and Industrial Research, UniversitiTeknologi Malaysia,
81310 UTM Skudai, Johor, Malaysia
e-mail: hadi@kimia.fs.utm.my; website: http://hadinur.com

ABSTRACT

The design and synthesis of particulate materials for new catalyst systems with novel properties remain a big challenge today. Here an attempt has been made to synthesize metal oxide particulate materials for several heterogeneous catalytic and photocatalytic systems, which contain examples from our recent research projects in this area. The particulate metal oxide catalysts have been designed for single centre catalyst, phase-boundary catalyst, bifunctional catalyst, photocatalyst and chiral catalyst. In our current research, the synthesis of well-aligned titanium dioxide catalyst with very high length to the diameter ratio was also demonstrated for the first time by sol-gel method under magnetic field with surfactant as structure aligning agent.

Keywords: Particulate materials; Heterogeneous catalytic system; Synthesis of titanium dioxide under magnetic field; Liquid-gas boundary catalyst; Bifunctional catalyst; Photocatalyst.
A Millimeter-Wave GBSAR for Landslide Monitoring

Ir. Dr. Chan Yee-Kit¹, Ir. Dr. Koo Voon-Chet²

¹Associate Professor, Center for Remote Sensing and Surveillance Technologies, Multimedia University, Malaysia
²Professor, Center for Remote Sensing and Surveillance Technologies, Multimedia University, Malaysia

ABSTRACT

Every year, over one million people are exposed to weather-related landslide hazards around the World. Due to the recent climate change, it is likely that the decrease of permafrost areas, changes in precipitation patterns and increase of extreme weather events will influence the weather-related mass movement activities. This paper reports the recent development of a ground-based synthetic aperture radar (GBSAR) for continuous monitoring of landslide-prone areas in Malaysia. It is an ultra-wideband system operating at K-band with spatial resolution of 0.5 m in range and 2.9 mrad in cross range. The system is mounted on a rail which travels along a linear guide to achieve SAR imaging. The GBSAR has been installed at a test site to provide timely information for landslide monitoring and early warning system. The paper discusses the design, development and field experiments using the new GBSAR system.

Keywords: Synthetic Aperture Radar, Interferometry, Landslides, Millimeter-wave, Environmental Monitoring
NOVEL BACTERIAL CELLULOSE WITH WELL ORIENTED FIBRILS ALIGMENT: SYNTHESIS AND CHARACTERIZATION

Ananda Putra
Department of Chemistry, Faculty of Mathematics and Science, State University of Padang, Indonesia
anandap@fmipa.unp.ac.id

ABSTRACT

Bacterial cellulose (BC) having oriented fibrils alignment can be synthesized by Acetobacter xylinum (A. xylinum) at the liquid/oxygen-permeable substrate interface in a static cultivation process. We discovered that BC gel produced on ridges polydimethylsiloxane (R-PDMS) shows uni-axially oriented fibrils alignment along the ridge direction of substrate. The degree of orientation of BC gels increases with the decrease in the ridge size of the PDMS substrate. An optimum ridge size of 4.5 μm was observed where the BC gels show the highest birefringence (Δn), the highest fracture stress (σ), highest swelling degree (q), the lowest elastic modulus (E), and the thickest BC fibril. We also found that culturing a tubular BC (BC-TS) gel in oxygen-permeable silicone tubes with inner diameter <8 mm yields the BC-TS gel of the desired length, inner diameter, and thickness with uni-axially oriented fibrils along the longitudinal axis of the silicone tube. Thus, BC with a uni-axially oriented fibril structure and excellent mechanical properties holds promise for use as a micro vessel or soft tissue material in medical and pharmaceutical applications.

Index Terms — BC, A. xylinum, static cultivation, liquid/oxygen-permeable substrate interface, oriented fibrils
ASSESSMENT OF TRACE Pb (II) IN SLUDGE FROM BATANG ANAI RIVER’S PADANG

Indang Dewata1 and Edi Nasra
Departement of Chemistry State University of Padang
1i_dewata@yahoo.com

ABSTRACT

The concentration of trace Pb (II) in sludge samples from Batang Anai River’s Padang were investigated in this study. The samples collected from three location and each location consist of three point sampling. In this study, Pb(II) were determined in some sludge samples after development Al(OH)3 coprecipitation procedure using flame atomic absorbtion spectrometry (FAAS). Trace amounts of Pb (II) were quantitatively coprecipitated with Al(OH)3 at pH 6 and the coprecipitant could be easily dissolved with 1 mol dm-3 nitric acid. The proposed method was successfully applied to determination of lead in sludge samples.

Index Terms---coprecipitation, lead, FAAS, sludge

1. INTRODUCTION

Lead (Pb) is a common metal that is largely consumed in industrial fields. However, the emission of Pb to atmospheric and aquatic environments is strictly controlled under some regulations for environmental protection, since it has high toxicity for animals and human beings. Analysis for Pb in environmental samples has been performed by many techniques and methods. Since the concentrations of Pb in environmental water samples are extremely low, sensitive instruments such as ICP-MS, neutron activation analysis and electrochemical analysis have been used for the determination.

Coprecipitation is widely used for concentration of trace metals prior to various determination techniques including flame atomic absorption spectrometry. However, the coprecipitation is sometimes troublesome and time-consuming during filtration, which is frequently used for collection of precipitate. Some techniques such as flotation have been used to alleviate the weak points; a rapid coprecipitation technique is also one of the most useful ways.

This paper describe the fundamental conditions for the coprecipitation of trace amounts of lead in water with aluminium hydroxide and for the determination of these ions by flame atomic absorption spectrometry.

2. EXPERIMENTAL

2.1 Apparatus

A flame atomic absorption spectrometer AA1009M013 with Hitachi lead hollow-cathode for Atomic Absorption measurement. The optimum operating conditions, which were studied using a solution obtained by coprecipitation according to the recommended procedure from distilled water containing 100 ng of lead, are summarized in table 1. For pH measurement, a Hitachi-Horiba Model M-5 glass electrode pH meter was used.

2.2 Reagents

Lead Solution. A solutions containing about 1 mg cm^{-3} of lead was prepared by dissolving guaranteed reagent-grade metal nitrate in small amount of concentrated nitric acid and diluting with distilled water. The concentrations of lead were determined by complexometric titration using murexide as indicators.

Aluminium Hydroxide. About a 15 mg cm^{-3} aluminium solution was prepare by dissolving aluminium nitrate in distilled water. The aluminium concentration was determined at pH of about 2 bycomplexometric titration using xylenol orange as an indicator. All other reagents used were of guaranteed reagent grade.

2.3 Recommended procedure

To a sample solution (up to 200 cm^3) containing up to 100 ng of lead, 4 mg of aluminium is added, exactly, and the pH of the solution is adjusted to about 9.5 with a 0.1 mol dm^{-3} sodium hydroxide solution. To settle the produced precipitate, the solution is allowed
to stand for a few minutes; the precipitate is then collected on a Toyo Roshi PTFE membrane filter (pore size 0.5 μm, diameter 25 mm), filtered by suction, washed with a small amount of distilled water, and dissolved with 0.5 cm³ of 1 mol dm⁻³ nitric acid. The atomic absorbances of lead were measured under the operating conditions given in Table 1. A blank using distilled water was run according to the same procedure as that for the sample solution. In this work the blank could be neglected in most instances because it was extremely small.

If it is difficult to make up the final volume to 0.5 cm³ with good reproducibility, the following measurement is recommended: taking 10 mm³ of the final solution, the amount of lead in it (M₁ ng) is measured by flame atomic absorption spectrometry under the operating conditions given in Table 1. Taking another portion of the solution (V mm³), the amount of aluminium in it (S mg) is measured by complexometric titration using Xylenol Orange as an indicator. A blank is also run using distilled water as a sample solution. The content (M₀ ng) of lead in the original sample solution is calculated using the following equation:

\[M₀ = M₁ \times \left(\frac{V}{10} \right) \times \left(\frac{4}{S} \right) \]

Table 1. Operating conditions for the atomic absorption spectrometer

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical wavelength</td>
<td>217.0 nm</td>
</tr>
<tr>
<td>Lamp current</td>
<td>10 mA</td>
</tr>
<tr>
<td>Slit width</td>
<td>1.0 mm</td>
</tr>
<tr>
<td>Measurement time</td>
<td>3.0 s</td>
</tr>
<tr>
<td>Flame type</td>
<td>Air/acetylene</td>
</tr>
<tr>
<td>Air flow</td>
<td>3.5 L/min</td>
</tr>
<tr>
<td>Acetylene</td>
<td>1.50 L/min</td>
</tr>
<tr>
<td>Burner height</td>
<td>0.0 mm</td>
</tr>
</tbody>
</table>

2.3.1. Calibration curves

Straight lines passing through the origin were obtained up to 100 ng of lead in the final solution using the recommended procedure. The relative standard deviations obtained from five repeated determinations were 4.7 %. For 50 ng of lead, respectively. The detection limits (signal/noise=2) were 5.0 pg cm⁻³ of lead in 200 cm³ of the initial sample solution.

2.3.2. Interferences

According to the recommended procedure, the effect of 27 foreign ions on the determination of 50 ng of lead was examined. Table 2 shows that large amounts of sodium, potassium, magnesium, and calcium did not interfere for both determinations. No other ions tested produced any serious interference effect, even at a concentration 500-times the mass of lead present.

3. RESULTS AND DISCUSSION

The first year of the study consisted of two phases, namely:

a. Determination of the optimum conditions for coprecipitation of Pb²⁺ ions with coprecipitant Al(OH)₃ simultaneously measuring analytical performance.

b. Finding the influence of other ions such as Cu²⁺, Cd²⁺, Zn²⁺, Co²⁺, and Ni²⁺ on the determination of Pb²⁺ and preconcentration using Al(OH)₃ as coprecipitant.

In principle, preconcentration using coprecipitation with colloidal adsorption properties of precipitant Al(OH)₃ is used. When in a solution containing the analyte Al³⁺ and NaOH added, then formed colloidal Al(OH)₃ negatively charged. These colloids will adsorb positive ions of metal, and when the samples will precipitate together, as can be seen in the illustration in Figure 1.

![Fig 1. Pb²⁺ ion adsorption scheme by Coprecipitant](image)

Al(OH)₃ chosen as coprecipitant because of its Ksp value which is smaller than the analyte (Ksp Al(OH)₃ = 5 x 10⁻³³) that will form the hydroxide first and then adsorbs metal ions. Because of the ability of adsorbed almost the same, then the influence of other metals in the determination of Pb²⁺ important to know. Therefore, the optimum condition of ions bullies need to be known to be anticipated interruption of the metal ions.

Study of the optimum conditions for coprecipitation

Effect of the pH on coprecipitation. The effect of the pH on coprecipitation with aluminium hydroxide was studied with a solution containing 40 mg lead. The maximum and almost constant recoveries were obtained in the pH range of 5.0 – 9. The precipitate aluminium hydroxide, obtained as mentioned above, at a pH 6.0 was bulky, and hence easily handled. Therefore, the pH was adjusted to about 6.5 with a 0.1 mol/L sodium hydroxide solution in further experiments.
Effect of the amount of coprecipitant. According to the recommended procedure, the necessary amount of aluminium for coprecipitation was examined with a sample solution (up to 500 mL) containing 10 ng of lead. The required amount of aluminium for quantitative coprecipitation increase along with increasing the sample volume, and 25 mg aluminium was needed for at least up 500 mL of the sample solution. Since the atomic absorption of lead was not affected by the presence of up to 74 mg of aluminium in the final sample solution (5 mL).

Effect of the pH on recovery of lead

Contact time. Contact time duration associated with Pb²⁺ coprecipitation process by Al(OH)₃ which can be seen in Figure 4.

From the picture it can be seen that the coprecipitation process occurs in a relatively long time is 30 minutes. Over a period of 30 minutes, quite stable metal ions adsorbed on the surface of colloidal shown by the metal concentrations were measured at the time of contact 45-75 minutes relatively constant (9.437 to 9.67 mg / L) and not too much less than at the time of contact 30 minute concentrations of metals 10.214 mg / L.

Eluent Volume. Metal ions adsorbed on the surface of colloidal Al(OH)₃ can be detected by using AAS after eluted with HNO₃. HNO₃ volume variation is used to elute the metal ions adsorbed can be seen in Figure 5.

HNO₃ is used as the eluent related to the solubility of nitrate salts of each metal are great in the water. Of the three metal ions adsorbed by Al(OH)₃, decreased due to the dilution factor. The smaller the volume of eluent more metal ions are detected because the larger the concentrated factor.

4. REFERENCES

