

HALAMAN PENGESAHAN

1. Judul	Pemodelan Energi Aktivasi Bakteri Bioluminisensi Melalui Kajian Dinamika Molekul Pusat Reaksi
 Bidang Ilmu Ketua Peneliti 	: Biofisika
 a. Nama Lengkap b. NIP c. NIDN d. Jabatan Fungsional e. Fakultas/Jurusan f. Pusat Penelitian g. Alamat Institusi h. Telp/Faks i. HP/e-mail 	: Dr. Ratnawulan, M.Si : 196901201993032002 : 0020016907 : Lektor : FMIPA UNP/Fisika : Universitas Negeri Padang : Jl. Prof.Dr. Hamka Kampus UNP Airtawar Padang : 0751-443450 : 0812 6641 581 / ratna_unp@yahoo.com

4. Lama Penelitian Keseluruhan : 1 tahun

5. Angota	:-
6. Biaya yang diusulkan	: Rp 15 .000.000,-

Mengetahui, Dekan FMIPA HODIKAWohn Persitas Negeri Padang

NIP. 19610510 198703 1 020

Padang, 21 Desember 2012

Ketua Peneliti,

(Dr. Ratnawulan, M.Si) NIP. 196901201993032002

ABSTRAK

Emisi atau pemancaran cahaya dari bakteri *Photobacterium phosphorium* yang diisolasi dari cumi laut Indonesia melibatkan enzim yang disebut luciferase dan disingkat LBPP. Walaupun sudah banyak informasi ilmiah yang dihasilkan dari penelitian bakteri luminisensi lokal ini, bagaimana struktur dasar dari pusat reaksi bioluminisensi bakteri yaitu model tingkat energi aktivasinya, sampai sekarang masih belum diketahui. Informasi ini penting untuk merubah warna cahaya yang dihasilkan bakteri dengan variasi warna-warna yang lain seperti halnya boiled (merah, kuning, hijau, jingga dsb). Tujuan penelitian ini adalah mendapatkan model tingkat energi aktivasi bakteri bioluminisensi melalui kajian dinamika molekul.

Metode yang digunakan pada penelitian ini adalah kajian teoritik menggunakan simulasi komputasi. Simulasi dilakukan dengan bantuan program Chemoffice 3D untuk mendapatkan koordinat internal molekul keadaan eksitasi` dan metode dinamika molekul (DM) untuk menghitung perubahan enthalpy. Dari hasil simulasi kemudian dilakukan perhitungan teoritik besarnya energy aktivasi molekul keadaan eksitasi dan selanjutnya dikorelasikan dengan besarnya energy aktivasi emisi bakteri yang diperoleh melalui pengukuran.

Hasil analisis pengukuran energy aktivasi bakteri *Photobacterium phosphoreum* secara simulasi dinamika molekul memberikan besar energy aktivasi keadaan eksitasi adalah 0,69 eV, sedangkan hasil eksperimen adalah 0,82 eV. Perbedaan hasil pehitungan dengan hasil pengukuran adalah sebesar 0,11 eV. Dengan kata lain terdapat kesalahan perhitungan sebesar 15 %. Hasil yang diharapkan pada penelitian ini adalah dihasilkan suatu landasan ilmiah model tingkat energi aktivasi bakteri bioluminisensi. Landasan ilmiah ini nantinya akan dipublikasi di jurnal nasional terakreditasi.

PENGANTAR

Kegiatan penelitian mendukung pengembangan ilmu serta terapannya. Dalam hal ini, Lembaga Penelitian Universitas Negeri Padang berusaha mendorong dosen untuk melakukan penelitian sebagai bagian integral dari kegiatan mengajarnya, baik yang secara langsung dibiayai oleh dana Universitas Negeri Padang maupun dana dari sumber lain yang relevan atau bekerja sama dengan instansi terkait.

Sehubungan dengan itu, Lembaga Penelitian Universitas Negeri Padang bekerjasama dengan Pimpinan Universitas, telah memfasilitasi peneliti untuk melaksanakan penelitian tentang *Pemodelan Energi Aktiviasi Bakteri Bioluminisensi melalui Kajian Dinamika Molekul Pusat Reaksi*, sesuai dengan Surat Penugasan Pelaksanaan Penelitian Dosen Madya Universitas Negeri Padang Tahun Anggaran 2012 Nomor: 722/UN35.2/PG/2012 Tanggal 3 Desember 2012.

Kami menyambut gembira usaha yang dilakukan peneliti untuk menjawab berbagai permasalahan pembangunan, khususnya yang berkaitan dengan permasalahan penelitian tersebut di atas. Dengan selesainya penelitian ini, Lembaga Penelitian Universitas Negeri Padang akan dapat memberikan informasi yang dapat dipakai sebagai bagian upaya penting dalam peningkatan mutu pendidikan pada umumnya. Di samping itu, hasil penelitian ini juga diharapkan memberikan masukan bagi instansi terkait dalam rangka penyusunan kebijakan pembangunan.

Hasil penelitian ini telah ditelaah oleh tim pembahas usul dan laporan penelitian, kemudian untuk tujuan diseminasi, hasil penelitian ini telah diseminarkan ditingkat Universitas. Mudah-mudahan penelitian ini bermanfaat bagi pengembangan ilmu pada umumnya dan khususnya peningkatan mutu staf akademik Universitas Negeri Padang.

Pada kesempatan ini, kami ingin mengucapkan terima kasih kepada berbagai pihak yang membantu terlaksananya penelitian ini, terutama kepada pimpinan lembaga terkait yang menjadi objek penelitian, responden yang menjadi sampel penelitian, dan tim pereviu Lembaga Penelitian Universitas Negeri Padang. Secara khusus, kami menyampaikan terima kasih kepada Rektor Universitas Negeri Padang yang telah berkenan memberi bantuan pendanaan bagi penelitian ini. Kami yakin tanpa dedikasi dan kerjasama yang terjalin selama ini, penelitian ini tidak akan dapat diselesaikan sebagaimana yang diharapkan dan semoga kerjasama yang baik ini akan menjadi lebih baik lagi di masa yang akan datang.

Terima kasih.

Padang, Desember 2012 Ketua Lembaga Penelitian Universitas Negeri Padang, wen Bentri, M.Pd. IPAc19610722 198602 1 002

DAFTAR ISI

~ ~	
н	91
	a 1

BSTRAK	i
ALAMAN PENGESAHAN	ii
ATA PENGANTAR	iii
AFTAR ISI	iv
AFTAR GAMBAR	v
AFTAR TARFI.	vi
AFTAR LAMPIRAN	vii
	• 11
AB I PENDAHULUAN	1
A Latar Relakang Masalah	1
B Rumusan Masalah	2
C Tuiuon Danalitian	2
D. Lugran Danalitian	2
	2
AR II KA HAN PUSTAKA	Л
A Darkembangan (Kemutakhiran) Danalitian Dialuminiaansi Daktari	-+ /
A. Ferkentoangan (Kentutakintan) Fenentian Diotuminisensi Dakteri	4
B. Kajian Pola Aktivitas Bioluminisensi Bakten	4
C. Kajian Lokasi Dudukan Aktif Bioluminisensi Bakteri	6
D. Hasil yang Sudah Dicapai	7
E. Tinjauan Teori Fisika Luminisensi	12
DII METADE DENEI ITIAN	10
A Simulari Dinamila Malalul	10
A. Simulasi Dinamika Molekul	18
B. Penentuan Koordinat Internal Molekul	19
C. Profil Perbedaan Energi Potensial pada Reaksi LBPP	21
DIVITACIE DENIEL TOLAN	22
A Deduies Dete	23
A. Deskipsi Data.	23
B. Analisa Data	26
C. Pembahasan	30
D V VESIMDUL AN DAN CADAN	22
A Keelmanlan	32
	32
B. Saran	32
FTAD DUSTAKA	32
	25
	33

DAFTAR GAMBAR

umbar II.1	Bakteri luminisensi yang bersimbiosa pada cumi-cumi (a) bakteri menempati sepasang organ cahaya dari cumi, (b) posisi organ cahaya pada kantung tinta cumi-cumi, (c) bakteri dalam kantung organ cahaya cumi-cumi dan (d) struktur sel bakteri yang terdiri dari materi DNA dan polihidroksiburat (phb) (Pringgenis, dkk, 2001)	8
ımbar II.2	Mekanisme model reaksi LBPP , (a) $FMNH_2$ ($\Delta H_f = -82,28$ kkal/mol), (b) KT-1 ($E_a = 3,9$ kkal/mol), (c) KI-1 ($\Delta H_f = -84,86$ kkal/mol), (d) KT-2 ($E_a = 18,5$ kkal/mol), (e) KI-2 ($\Delta H_f = -87,120$ kkal/mol), (f) KT-3 ($E_a = 20$ kkal/mol), (g) KI-3 ($\Delta H_f = -97,50$ kkal/mol), (h) KE atau IV* ($E_a = 0$ kkal/mol, $\Delta H_f = -97,5$ kkal/mol) dan (i) FMN ($\Delta H_f = -17,28$ kkal/mol).	11
ımbar II.3	Diagram Jablonski untuk molekul	14
ımbar II.4	Proses energi pada reaksi kemiluminisensi / bioluminisensi untuk reaksi : A + B → C* + D → C + hv(Orchin dan Jaffe, 1980)	16
ımbar III.1	Sistem geometri internal	20
mbar III.2	Kurva perbedaan energi potensial pada reaksi LBPP	21
umbar IV.1	Parameter dinamika molekul	23
ımbar IV.2	(a) Struktur geometri molekul $FMNH_2 + ASn$, (b) Koordinat internal Asn dan $FMNH_2$	24
mbar IV.3	Struktur geometri molekul FMNH + O $_2$ dan (b) Koordinat internalnya	24
mbar IV.4	a) Struktur geometri molekul FMNHOO ⁻ + LysH ; (b) koordinat internalnya	25
umbar IV.5	Struktur geometri molekul FMNHOOH + RCOH; (b) Koordinat internalnya	25
mbar IV.6	Struktur geometri molekul tereksitasi FMNHOH*; (b) Koordinat internalnya	26
mbar IV.7	Energi potensial fungsi waktu FMNH + Asn	26
mbar IV.8	Energi potensial molekul FMNH ⁻ +O2	27
mbar IV.9	Energi potensial fungsi waktu FMNHOO ⁻ + LysH	28
mbar IV.10	Energi potensial fungsi waktu FMNHOOH + RCOH	28
mbar IV.11	Energi potensial fungsi waktu molekul eksitasi FMNHOH*	29
mbar IV.12	Model tingkat energi aktivasi bakteri luminisensi berdasarkan dinamika molekul pada pusat reaksi	30

Hal

DAFTAR TABEL

bel II.1	Perbandingan Karakteristik Fisis Pemancaran Cahaya Reaksi Bioluminisensi Bakteri Photobacterium phosphoreum dengan Bakteri- bakteri Luminisensi Lainnya	9
bel II.2	Energi potensial sisi aktif yang dihitung dengan metode MNDO-PM3	10
bel II.3	Jenis Proses Pemancaran Cahaya Beserta Skala Waktunya	15

Hal

DAFTAR LAMPIRAN

		Hal
mpiran I	Artikel Publikasi	36
mpiran II	Contoh Perhitungan Simulasi Dinamika Molekul	47

1

BABI. PENDAHULUAN

A. Latar Belakang Masalah

Sejak diketahui bahwa bahan bioaktif yang berasal dari organisme luminisensi mempunyai implikasi yang besar dalam berbagai bidang seperti kesehatan lingkungan maupun industri, maka eksplorasi bahan bioaktif seperti enzim luciferase dari berbagai sumber menarik perhatian para ilmuwan (Biron, (2003), Kratasyuk, dkk (2004)). Apalagi dari hasil penelitian, diketahui bahwa efisiensi kuantum pemancaran cahaya dalam keadaan in vitro mencapai 90 %, kontras dengan efisiensi cahaya dari bola lampu listrik yang hanya 20 % (80 % hilang dalam bentuk panas dan bunyi) (Hasting, 1998). Mengingat besarnya nilai batas efisiensi cahaya yang dihasilkan, maka enzim ini berpotensi untuk berbagai aplikasi, salah satunya adalah untuk lampu estetika di rumahrumah. Realisasi dan komersialisasi aplikasi tersebut diharapkan akan memberikan dampak pada teknologi bioLED.

Dari sejumlah besar enzim luciferase yang ada, enzim luciferase dari bakteri Photobacterium phosphorium yang berpotensi paling baik bagi aplikasi tersebut ini disebabkan enzim luciferase dari bakteri Photobacterium phosphorium menghasilkan pemancaran cahaya paling terang dari semua enzim luciferase yang ada (Madden & Lidesten, 2001) dan banyak terdapat di daerah tropis seperti Indonesia. Pringgenies (2001) telah melakukan penyelidikan tentang bakteri ini dan menyimpulkan bahwa cahaya yang dipancarkannya disebabkan hubungan simbiosa antara cumi-cumi jenis Laligo duvaucelli dengan bakteri Photobacterium phosphoreum yang hidup didalamnya. Akibat interaksi antara cumi dengan bakteri dalam proses simbiosis tersebut mengakibatkan cumi jenis Laligo duvaucelli memancarkan cahaya sehingga terjadi peristiwa yang disebut bioluminesensi.

Proses pemancaran cahaya dari bakteri *photobacterium phosphorium* melibatkan enzim luciferase yang selanjutnya disebut luciferase dari bakteri *photobacterium phosphorium* (LBPP) mengkatalis tiga substrat yaitu flavin tereduksi (FMNH₂), molekul oksigen (O₂) dan aldehyd rantai panjang (RCOH). Reaksi tersebut membebaskan flavin (FMN), asam fatty rantai panjang (RCOOH), molekul air (H₂O) sambil memancarkan cahaya tampak berwarna biru(hv). Pada keadaan tereksitasi elektron tidak stabil dan akan kembali ke tingkat dasarnya sambil melepaskan foton dalam bentuk cahaya yang berwarna biru (Ratnawulan dkk, (2004)).

Untuk memenuhi persyaratan praktis/komersial diperlukan kriteria enzim bersangkutan perlu dipersiapkan dalam bentuk murni yang stabil dengan karakteristik pemancaran yang optimum. Ratnawulan dkk (2005 & 2004) telah berhasil mengisolasi dan memurnikan enzim luciferase dari LBPP yang diperoleh dari cumi-cumi laut Indonesia beserta karakteristik pemancaran optimumnya nya. Walaupun sudah banyak informasi ilmiah yang tersedia untuk bakteri luminisensi lokal ini, seperti: penyebab, karakteristik dan mekanisme bioluminisensi bakteri, dan perubahan perilaku fisis system biolumisensi akibat keberadaan logam berat (Ratnawulan, dkk, 2005, 2006a, 2006b, 2011) tetapi bagaimana merubah warna cahaya yang dihasilkan bakteri dengan variasi warna-warna yang lain seperti halnya bioLed, sampai sekarang merupakan objek penelitian pada bidang Fisika bioluminisensi. Secara teoritis, untuk dapat merubah atau merekayasa warna-warna cahaya yang ada, maka terlebih dahulu harus tahu dulu struktur dasar tingkat energi aktivasi dari bakteri luminisensi. Oleh karena itu diperlukan penelitian tentang pemodelan tingkat energi aktivasi bakteri berdasarkan dinamaka molekul.

B. Rumusan Masalah

Rumusan masalah pada penelitian ini adalah bagaimana model tingkat energi aktivasi bakteri luminisensi berdasarkan dinamika molekul pada pusat reaksi.

C. Tujuan Penelitian

Tujuan penelitian ini adalah mengetahui model tingkat energy aktivasi bakteri luminisensi berdasarkan dinamika molekul pada pusat reaksi.

D. Luaran Penelitian

Luaran penelitian ini adalah sebagai berikut ini.

1. Hasil utama yang diharapkan pada penelitian ini adalah dihasilkan landasan ilmiah tentang model tingkat energy aktivasi bakteri luminisensi.

2. Hasil penelitian ini diharapkan dipublikasi di jurnal nasional tidak maupun yang terkareditasi yaitu Jurnal Makara seri Sains

T

I

- 3. Sebagai bahan tambahan membuat buku seri kedua Fisika Luminisensi yang tdapat digunakan sebagai bahan ajar untuk matakuliah Biofisika
- 4. Penelitian ini membuka kemungkinan kerjasama antar peneliti dalam berbagai bidang ilmu seperti biofisika, biokimia, bakteriologi dan kelautan.

BAB II. KAJIAN PUSTAKA

A. Perkembangan (Kemutakhiran) Penelitian Bioluminisensi Bakteri

Fenomena bioluminisensi pada organisme hidup telah menjadi objek perhatian semenjak zaman dahulu kala. Ketika Cristopher Columbus menyeberangi laut Atlantik, ia sering melihat cahaya luminisensi misterius di sekitar kapalnya. Saat itu, dijelaskan bahwa luminisensi yang ditemukan di laut dihubungkan dengan monster atau misteri lain yang belum diketahui (Harvey, 1920 dikutip dari Floyd, 1997). Usaha serius pertama ilmuwan untuk menyelidiki asal muasal luminisensi pada organisme dimulai pada pertengahan tahun 1600 Masehi. Saat itu Boyle menguji pengaruh oksigen pada luminisensi yang teramati pada daging yang sudah mati. (Harvey, 1952 dikutip dari Kruse dan Boyle, 2000). Pada tahun 1830, ilmuwan Jerman, G.A. Michaelis, menemukan bahwa luminisensi dari daging yang sudah mati disebabkan oleh sesuatu yang hidup (Harvey, 1920 dikutip dari Biron, 2003). Penemuan G.A. Michaelis ini merupakan titik awal para peneliti untuk mengobservasi luminisensi pada makluk hidup. Saat ini, bioluminisensi telah diobservasi pada ribuan spesies meliputi kunang-kunang, jamur, binatang laut dan bakteri.

Salah satu spesies yang menarik perhatian adalah bakteri luminisensi. Bakteri luminisensi mayoritas ditemukan di alam dalam bentuk simbiosis dengan makluk hidup yang lain seperti ikan, cumi dan ada juga yang mampu hidup bebas di alam (Meyer-Rochow, 2001). Holt dkk. (1994) mengungkapkan bahwa bakteri luminisensi dapat dikelompokkan atas tiga genus: pertama *Photobacterium*, kedua *Vibrio*, dan ketiga *Photorhabdus*. Genus yang ada pada lingkungan laut dikelompokkan sebagai *Photobacterium* dan *Vibrio*. Genus *Photobacterium* kebanyakan bersimbiosa pada organ cahaya dari binatang laut sedangkan genus *Vibrio* selain ada dalam keadaaan bersimbiosa juga ditemukan dalam keadaan hidup bebas di dalam laut. Sedangkan genus *Photorhabdus* hidup bebas di lingkungan darat.

B. Kajian Pola Aktivitas Bioluminisensi Bakteri

I

Hasting (1971) telah merumuskan reaksi bioluminisensi untuk bakteri yaitu melibatkan enzim yang disebut luciferase. Luciferase ini mengkatalis tiga substrat yaitu

flavin mononukleotida tereduksi (FMNH₂), molekul oksigen (O₂) dan aldehid rantai panjang (RCOH). Reaksi tersebut membebaskan flavin (FMN), asam lemak rantai panjang (RCOOH), molekul air (H₂O) sambil memancarkan cahaya tampak (hv) sebagai berikut.

$$FMNH_2 + O_2 + RCOH \rightarrow FMN + RCOOH + H_2O + hv$$
(II.1)

Untuk menjelaskan proses bioluminisensi pada bakteri, Hasting dkk. (1973) membagi reaksi bioluminisensi atas empat intermediat kunci sesuai dengan urutan reaksi yaitu intermediat I (substrat FMNH₂ terikat pada luciferase), intermediat II (penambahan substrat O₂ pada reaksi intermediat I), intermediat III (penambahan substrat RCOH pada reaksi intermediat II) dan intermediat IV* (keadaan eksitasi dari reaksi yang akan meluruh kekeadaan dasar sambil memancarkan cahaya) sesuai persamaan berikut.

Selanjutnya Hasting telah mengisolasi dan mengkarakterisasi intermediat II reaksi bioluminisensi pada bakteri *Photobacterium fisheri* dengan memakai metode absorbsi spektroskopi. Intermediat II bakteri ini mempunyai absorbsi energi dengan sebuah puncak pita tunggal pada panjang gelombang 372 nm. Balny dan Hasting (1975), Tu (1979) dan Lee dkk. (1988) telah mengkarakterisasi intermediat II pada bakteri yang sama memakai metode fluoresensi spektroskopi. Hasilnya menemukan bahwa emisi fluoresensi maksimum dari intermediat II terjadi pada panjang gelombang 485 nm. Vervoort dkk. (1986a dan 1986b) juga menyelidiki intermediat II dari bakteri *Photobacterium fisheri* untuk mengetahui dudukan pengikatan FMNH₂ dengan memakai metoda NMR. Hasilnya menemukan bahwa dudukan C_{4a} pada FMNH₂ merupakan dudukan pengikatan O₂.

Marcheroux dkk. (1993) mengkarakterisasi sifat spektral dan kinetik dari intermediat III pada bakteri yang sama. Hasilnya menunjukkan bahwa spektrum absorbsi maksimum dari intermediat III terjadi pada panjang gelombang 365 nm dan spektrum emisi terjadi pada panjang gelombang 460 nm.

Selanjutnya karakteristik fluoresensi dari intermediat IV telah dilaporkan oleh Matheson dkk. (1981) menggunakan berbagai jenis substrat flavin bentuk tereduksi. Matheson dkk. Menyimpulkan bahwa spektrum bioluminisensi memakai lumiflavin tereduksi mempunyai pola yang sama dengan spektrum bioluminisensi memakai substrat FMNH₂ dimana intensitas maksimum terjadi pada panjang gelombang 492 nm dan *quantum yield* adalah 0,3. Kurfust dkk. (1984) juga melakukan pengukuran spektrum absorbsi dari intermediat IV dan menemukan bahwa spektrum absorbsi maksimum dari intermediat IV terjadi pada panjang gelombang 360 nm.

C. Kajian Lokasi Dudukan Aktif Bioluminisensi Bakteri

Pusat aktivitas bioluminisensi pada setiap intermediat terjadi pada lokasi dudukan aktif bioluminisensi bakteri. Dudukan aktif didefenisikan sebagai permukaan enzim dimana molekul substrat terikat pada enzim terjadi reaksi luminisensi. Meigen dan Bartlet (1980) mengungkapkan bahwa dudukan aktif terletak pada subunit α sehingga modifikasi subunit ini akan mengubah sifat katalis dari luciferase. Ketidakhadiran subunit β menyebabkan subunit α tidak berfungsi secara optimal sehingga intensitas cahaya yang dipancarkan adalah rendah. Untuk memprediksi dudukan aktif dari luciferase, Swanson dkk. (1985) telah melakukan studi awal tentang struktur kristal dari luciferase bakteri Vibrio harveyi pada resolusi 3Å. Struktur kristal dari Vibrio harveyi menunjukkan bahwa terjadi interaksi intensif dan pola pengikatan kompleks antara beberapa rantai dudukan dan punggung asam amino dari subunit α dan β . Dari hasil penelitian ini diketahui bahwa subunit β berfungsi sebagai penunjang perubahan konformasi pada subunit α selama katalis dimana subunit α diprediksi sebagai lokasi dudukan aktif. Selanjutnya Flynn dkk. (1993) menyatakan bahwa subunit a dari luciferase bakteri Vibrio harveyi berfungsi sebagai tempat pengikatan substrat dari reaksi bioluminisensi. Sedangkan Waddle dan Baldwin (1991) menyatakan bahwa aktivitas bioluminisensi yang teramati adalah hasil reaksi yang dikatalis oleh subunit α tanpa kehadiran subunit β . Sebaliknya aktivitas bioluminisensi juga teramati pada subunit β tanpa kehadiran subunit α .

Choi dkk. (1995) menemukan bahwa dudukan aktif tunggal boleh jadi terletak di antarmuka subunit-subunit. Dugaan ini diperoleh berdasarkan studi hibridasi subunit dan pelabelan fotoaktivitas pada luciferase. Ini berbeda dengan teori yang dikemukakan Fisher dkk. (1995 dan 1996) bahwa pusat aktif dari enzim luciferase terletak pada subunit α . Choi mengklaim bahwa masing-masing subunit dari luciferase *Vibrio harveyi* terlibat aktif dalam katalis reaksi pemancaran cahaya. Kemampuan subunit α dan β dalam mengkatalis pemancaran cahaya adalah kunci untuk memahami bagaimana kehadiran logam-logam berat dapat menginhibisi intensitas bioluminisensi.

D. Hasil yang Sudah Dicapai

Penelitian tentang fenomena luminisensi yang dihasilkan oleh bakteri Photobacterium phosphoreum yang diisolasi dari cumi laut Indonesia dimulai semenjak Pringgenis, dkk, (2001) menemukan kehadiran bakteri Photobacterium phosphoreum pada cumi-cumi jenis Loligo duvauceli di laut Indonesia. Populasi cumi-cumi ini dominan di laut Indonesia dan termasuk dalam cumi-cumi ekonomis penting. Bakteri Photobacterium phosphoreum terdapat pada sepasang organ cahaya yang menempel pada bagian dorso-lateral kantung tinta seperti diperlihatkan pada Gambar II.1(a). Posisi organ cahaya di bagian dorsal kantung tinta cumi mudah diketahui karena berwarna kontras yaitu putih dengan panjang 2 s.d 5 mm seperti diperlihatkan pada Gambar II.1(b). Didalam organ cahaya terdapat kantung organ cahaya yang berisi penuh dengan koloni bakteri seperti diperlihatkan pada Gambar II.1(c). Sel bakteri tampak berbentuk batang atau silinder dan tidak mempunyai rambut getar atau flagella. Ukuran bakteri adalah 0,9 µm x 3,2 µm. Permukaan sel bakteri mengandung suatu lapisan kapsula dan didalam sel terdapat satu atau lebih butiran phb (polihidroksiburat) serta DNA seperti yang diperlihatkan pada Gambar II.1(d). Keberadaan kapsula pada bakteri Photobacterium phosphoreum ini merupakan karakteristik khas yang dimiliki oleh strain tropis yang berbeda dari jenis Photobacterium phosphoreum yang pernah dilaporkan.

Gambar II.1 Bakteri luminisensi yang bersimbiosa pada cumi-cumi (a) bakteri menempati sepasang organ cahaya dari cumi, (b) posisi organ cahaya pada kantung tinta cumi-cumi, (c) bakteri dalam kantung organ cahaya cumicumi dan (d) struktur sel bakteri yang terdiri dari materi DNA dan polihidroksiburat (phb) (Pringgenis, dkk, 2001).

Bakteri *Photobacterium phosphoreum* mudah ditumbuhkan dalam laboratorium dengan cara mengeluarkan kantong tinta dari cumi kemudian organ cahaya dilepas dari kantong tinta dan dipisahkan dari lensanya. Lensa kemudian dibelah dan digerus supaya bakteri dapat dibiakkan pada media "agar miring".

a. Isolasi, Identifikasi dan Pemurnian Senyawa Aktif Penyebab Pemancaran cahaya pada Bakteri *Photobacterium phosphoreum*

Senyawa aktif penyebab pemancaran cahaya pada bakteri *Photobacterium* phosphoreum yang diisolasi dari cumi laut Indonesia telah berhasil diisolasi dan dimurnikan sampai 97% oleh Ratnawulan, dkk, (2005) dengan metode DEAE Selulosa dan kromatografi gel filtrasi Sephadex G 100. Senyawa aktif tersebut dinamakan dengan luciferase disingkat LBPP (Luciferase Bakteri *Photobacterium phosphoreum*), terdiri

lari dua subunit α dan subunit β dengan berat molekul masing-masing adalah 41 kD dan 18 kD. Aktivitas spesifik dari LBPP adalah 3,5x10¹⁶ quanta /s.mg.

). Karakteristik Fisis Pemancaran Cahaya Reaksi Bioluminisensi Bakteri Photobacterium phosphoreum

Hasil analisis karakteristik fisis pemancaran cahaya dari reaksi bioluminisensi bakteri *Photobacterium phosphoreum*, menunjukkan bahwa panjang gelombang eksitasi lari intermediat II dan intermediat III adalah 366 nm dan 350 nm sedangkan panjang gelombang cahaya emisi adalah 516 nm. Reaksi berlangsung pada kondisi optimum limana pH adalah 7, temperatur adalah 25°C, konstanta peluruhan cahaya adalah 0,007/s, *quantum yield* adalah 0,3 dan energi aktivasi reaksi adalah 19 kkal/mol atau setara dengan 0,82 eV. Perubahan pH, temperatur, konsentrasi oksigen dan kontaminasi logam berat tidak menyebabkan pergeseran panjang gelombang emisi 516 nm tetapi hanya mengubah intensitas cahaya (Ratnawulan, dkk, 2004). Berikut ini perbandingan karakteristik fisis pemancaran cahaya bioluminisensi bakteri *Photobacterium phosphoreum* dengan bakteri luminisensi lainnya dirangkum pada Tabel II.1.

Luciferase	λ _{eksitasi} (nm)	λ _{emisi} (nm)	T (⁰C)	рН	q	E _a (kkal/ mol)
Photobacterium phosphoreum	350	516	25	7	0,3	19
(Ratnawulan, 2004, 2005)						
Photobacterium phosphoreum	363	495	25	7	0,1	-
(Kasai dkk. 1987)						
Vibrio harveyi	370	490	30	8	0,27	-
(Fisher dkk. 1996)						
Vibrio harveyi	-	490	25	7	0,01	13
(Nicoli dkk. 1974)						
Photobacterium fisheri	-	536	25	8,5	0,3	-
(Tanner dkk. 1996)						
Photobactrium leiognathi	-	490	25	6,5	0,1	-
(Moore dkk. 1995)						

Tabel II.1. Perbandingan Karakteristik Fisis Pemancaran Cahaya Reaksi Bioluminisensi Bakteri Photobacterium phosphoreum dengan Bakteri-bakteri Luminisensi Lainnya

Dari Tabel II.1 dapat disimpulkan bahwa karakteristik fisis pemancaran cahaya dari reaksi LBPP yang diisolasi dari cumi laut Indonesia memiliki perbedaan dengan karakteristik fisis cahaya dari bakteri lain. Perbedaan tersebut terletak pada panjang gelombang eksitasi intermediat III, panjang gelombang emisi, kuantum yield dan energi aktivasi.

Dengan diketahuinya karakteristik fisis pemancaran cahaya dari reaksi bioluminisensi bakteri *Photobacterium phosphoreum*, maka setiap pekerjaan eksperimen yang melibatkan enzim ini dilakukan pada kondisi optimum ini.

c. Prediksi dudukan aktif dan Karakteristik Fisis Pembentukan Keadaan Eksitasi Reaksi Bioluminisensi Bakteri *Photobacterium phosphoreum*

Hasil prediksi dudukan aktif menggunakan metoda MNDO-PM3 mendapatkan bahwa dan asparagin (Asn) dan lysin (Lys-H⁺) pada LBPP adalah representasi residuresidu katalis yang terlibat dalam proses protonasi dan deprotonasi dari subtrat FMNH₂ dan telah dirangkum pada Tabel II.2 (Arif & Ratnawulan, 2006).

Tabel II.2. Energi potensial sisi aktif yang dihitung dengan metode MNDO-PM3

Asam amino (B, AH)	Jarak transfer proton R _H (Å)	Potensial barrier E _a (eV)
Asn	2,4	0,17
Asp	2,4	5,7
Lys-H ⁺	3	Down (Spontan)
His	-	Up

Mekanisme pembentukan keadaan eksitasi pada bakteri *Photobacterium* phosphoreum diperoleh dari hasil analisis pengikatan dudukan aktif LBPP dengan substrat-substratnya dan diperlihatkan pada Gambar II.2 (Arif & Ratnawulan, 2006).

Gambar II.2 Mekanisme model reaksi LBPP, (a) $FMNH_2 (\Delta H_f = -82,28 \text{ kkal/mol})$, (b) $KT-1 (E_a = 3,9 \text{ kkal/mol})$, (c) $KI-1 (\Delta H_f = -84,86 \text{ kkal/mol})$, (d) $KT-2 (E_a = 18,5 \text{ kkal/mol})$, (e) $KI-2 (\Delta H_f = -87,120 \text{ kkal/mol})$, (f) $KT-3 (E_a = 20 \text{ kkal/mol})$, (g) $KI-3 (\Delta H_f = -97,50 \text{ kkal/mol})$, (h) KE atau $IV^* (E_a = 0 \text{ kkal/mol})$, $\Delta H_f = -97,5 \text{ kkal/mol})$ dan (i) $FMN (\Delta H_f = -17,28 \text{ kkal/mol})$.

Karakteristik energi aktivasi dan urutan reaksi LBPP memperlihatkan bahwa deprotonasi pada kedudukan N₁ dari FMNH₂ oleh residu asam amino Asn untuk membentuk intermediat I mengalami energi aktivasi sebesar 3,9 kkal/mol. Reaksi intermediat I dengan O₂ membentuk intermediat II dengan energi aktivasi sebesar 18,5 kkal/mol. Reaksi intermediat II dengan RCOH membentuk intermediat III dengan energi aktivasi sebesar 20 kkal/mol. Pelepasan molekul RCOOH dari intermediat III membentuk intermediat IV* yang disebut dengan keadaan eksitasi. Hasil analisis pengukuran panjang gelombang cahaya secara eksperimen memberikan perubahan energi bebas Gibbs sebesar -55,228 kkal/mol. Sedangkan hasil analisis karakteristik fisis pembentukan keadaan eksitasi memberikan perubahan energi bebas Gibbs sebesar bioluminisensi ini selanjutnya digunakan sebagai model awal mekanisme bioluminisensi bakteri. Dari model awal ini dapat dipelajari tingkat Energi aktivasi bakteri berdasarkan kajian dinamika molekul.

E. Tinjauan Teori Fisika Luminisensi

Sebuah molekul organik dapat divisualisasikan sebagai kumpulan dari inti yang bergerak relatif lambat dan elektron yang menempati orbital spesifik mengelilingi inti. Setiap orbital ini diisi oleh maksimum dua elektron. Keadaan elektronik dalam molekul organik berhubungan dengan distribusi spasial tertentu dari elektron yang menempati orbital dengan energi tertentu. Sesuai dengan kaidah mekanika kuantum, energi keadaan elektronik yang stabil hanya dapat mempunyai nilai diskrit tertentu.

Molekul dalam keadaan dasar dapat menyerap energi sehingga berada dalam keadaan tereksitasi. Eksitasi ini dapat ditimbulkan oleh absorbsi gelombang elektromagnetik, absorbsi thermal atau reaksi kimia seperti reaksi bioluminisensi. Proses absorbsi untuk berbagai peristiwa terjadi dalam waktu sekitar 10⁻¹⁸ detik atau kurang. Dalam selang waktu tersebut, atom tidak mengalami gerakan. Kenyataan ini merupakan dasar prinsip Frank-Condon yang menyatakan bahwa molekul-molekul umumnya memasuki keadaan tereksitasi setelah adanya penyerapan elektronik.

Sebenarnya semua molekul organik mempunyai tingkat dasar tunggal (singlet), kecuali radikal-radikal bebas yang dinyatakan dengan S₀, keadaan tunggal tereksitasi yang dinyatakan sebagai S₁, S₂ dan seterusnya berdasarkan tingkat kenaikan energi dan keadaan triganda (triplet) yang dinyatakan dengan T₁, T₂ dan seterusnya. Biasanya molekul organik yang telah menyerap energi cenderung menempati keadaan tereksitasi singlet daripada keadaan triplet karena peralihan S₀ \rightarrow T₁. Hal ini menyangkut perubahan kelipatgandaan spin yang terlarang keras.

Adanya dua keadaan singlet dan triplet yang disebabkan elektron-elektron yang berpasangan pada keadaan dasar S₀ yakni sepasang untuk tiap orbital. Pada saat tereksitasi, salah satu elektron pindah kepada orbital yang mempunyai energi yang lebih tinggi. Salah satu dari kedua spin pada kedua elektron dalam keadaan tereksitasi dapat sama yakni keduanya +1/2 atau -1/2, atau kedua elektron itu mempunyai spin yang berlawanan yakni +1/2 dan -1/2. Kelipatgandaan suatu keadaan adalah sama dengan 2|S|+1 dimana S adalah jumlah bilangan spin, baik +1/2 maupun -1/2. Bila kedua elektron mempunyai spin yang sama maka S =1 dan 2|S|+1=3 sehingga diperoleh keadaan triplet. Bila elektron-elektron mempunyai spin berlawanan maka S=0 dan 2|S|+1=1 sehingga diperoleh keadaan singlet.

Proses eksitasi membawa molekul yang biasanya berada pada keadaan dasar dengan tingkat vibrasi terendah ke keadaan singlet tereksitasi. Molekul dalam keadaan tereksitasi dapat mengalami beberapa kemungkinan yang akan dijelaskan dengan diagram Jablonski pada Gambar II.3.

Suatu transisi spektrum yakni suatu garis absorbsi yang ditandai dengan huruf "a" pada Gambar II.3, merupakan selisih energi antara dua keadaan molekul yang melakukan absorbsi energi. Bila molekul mengabsorbsi energi hanya pada panjang gelombang tunggal maka spektrum akan terdiri dari garis-garis tunggal seperti pada spektrum emisi atom-atom. Biasanya molekul-molekul tidak hanya memiliki energi elektronik E_T tetapi juga energi vibrasi E_v dan energi rotasi E_R . Setiap peralihan elektronik akan memberikan

banyak garis (pita) dan jumlah energi yang dipindahkan sebanding dengan jumlah irisan semua garis tersebut.

Gambar II.3 Diagram Jablonski untuk molekul

Emisi radiasi yang menghasilkan peralihan molekul dari keadaan tereksitasi ke keadaan dasar tanpa mengalami perubahan dalam kelipatgandaan dinamakan fluoresensi dan ditandai dengan huruf "b" pada Gambar II.3. Fluoresensi terjadi khas dengan waktu paroh sekitar 10⁻⁹ s.d 10⁻⁷ detik. Karena itu fluoresensi praktis selalu terjadi dari keadaan tereksitasi terendah kelipatgandaan singlet sebab inilah satu-satunya kelipatgandaan dengan waktu paruh yang lebih lama daripada waktu yang diperlukan untuk berbagai tumbukan.

Karena fluoresensi biasa terjadi dari keadaan vibrasi terendah S₁ maka emisi seperti halnya absorbsi, selalu tegak, menurun dari tingkat vibrasi tereksitasi ke keadaan dasar. Hal ini adalah kebalikan dari kejadian absorbsi dimana transisi terjadi dari tingkat vibrasi v yang paling rendah (v = 0) pada S₀ dan molekul akan berakhir pada tingkat vibrasi yang lebih tinggi dengan v > 0 pada S₁. Akibatnya spektrum fluoresensi timbul pada panjang gelombang yang lebih besar atau frekuensi yang lebih kecil daripada spektrum absorbsi.

Proses lain transisi molekul yang tereksitasi ialah sesuatu yang terlarang yang disebut persilangan antar sistem yang menyangkut perubahan spin. Proses ini ditandai dengan

huruf "c" pada Gambar II.4. Proses ini terjadi melalui kopling orbit spin dalam hal ini keadaan dengan momen sudut spin yang berbeda dan momen sudut orbital yang sedikit bercampur, karena mempunyai momen sudut total yang sama.

Persilangan antar sistem dari singlet tereksitasi terendah ke triplet terendah adalah suatu hal yang penting dalam proses fotokimia karena mempunyai waktu hidup yang panjang. Kehilangan energi karena perpindahan triplet terendah ke keadaan dasar dapat terjadi disebabkan oleh proses radiatif yang disebut fosforesensi. Spektrum fosforesensi timbul pada panjang gelombang yang lebih besar dari pada spektrum fluoresensi. Proses fosforesensi ditandai dengan huruf "d" pada Gambar II.3.

Jenis proses terjadinya pemancaran cahaya beserta skala waktunya dapat disimpulkan pada Tabel II.3 (Orchin dan Jaffe, 1980.

Jenis Proses	Transisi	Waktu hidup τ (sec)
Eksitasi	$hv_0 + S_0 \rightarrow S_1, S_2,, S_n$	$10^{-15} - 10^{-12}$
Konversi internal	$S_n,, S_2 \rightarrow S_1 + panas$	$10^{-13} - 10^{-10}$
Konversi internal	$S_1 \rightarrow S_0 + panas$	10 ⁻¹⁰
Persilangan antar sistem	$S_1 \rightarrow T_1 + panas$	10 ⁻⁷
Persilangan antar sistem	$T_1 \rightarrow S_0 + panas$	$10^{-2} - 10^{2}$
Fluoresensi	$S_1 \rightarrow S_0 + hv_{fluor}$	$10^{-11} - 10^{-8}$
Fosforesensi	$T_1 \rightarrow S_0 + hv_{fosfor}$	> 10 ⁻⁶
Kemiluminisensi	Energi + $S_0 \rightarrow S_1 \rightarrow S_0 + hv_{kemilum}$	> 10 ⁻⁶

Tabel II.3 Jenis Proses Pemancaran Cahaya Beserta Skala Waktunya

Kemiluminisensi adalah pemancaran radiasi elektromagnetik sebagai hasil dari reaksi kimia yang menghasilkan molekul tereksitasi secara elektronik yang kembali ke keadaan dasar atau pada saat mentransfer energinya ke molekul lain, sambil memancarkan cahaya tampak. Kemiluminisensi yang terjadi pada organisme hidup disebut dengan bioluminisensi.

Ada tiga kondisi yang diperlukan untuk reaksi kemiluminisensi (Kricka dan Gary, 1983). Kondisi pertama adalah reaksi kimia harus eksotermik untuk membebaskan energi yang cukup untuk membentuk molekul keadaan tereksitasi, Kondisi kedua adalah reaksi kimia harus mampu menyokong terbentuknya molekul keadaan eksitasi. Sedangkan kondisi ketiga adalah molekul keadaan eksitasi harus mampu memancarkan cahaya sendiri atau mentransfer energinya ke molekul lain untuk memancarkan cahaya.

Secara umum, reaksi kemiluminisensi dapat dihasilkan oleh dua mekanisme dasar. Mekanisme pertama adalah reaksi langsung yang melibatkan dua reaktan bereaksi dalam kehadiran kofaktor untuk membentuk sebuah produk keadaan tereksitasi elektronik. Produk tersebut kemudian mengalami relaksasi ke keadaan dasar sambil memancarkan sebuah foton. Reaksi langsung dapat dinyatakan sebagai berikut

$$A+B \rightarrow C^* + D \tag{II.3}$$

$$C^* \rightarrow C + h\nu$$
 (II.4)

dimana A dan B reaktan dan C* adalah produk tereksitasi. Ilustrasi proses energi eksitasi untuk reaksi langsung kemiluminisensi ditunjukkan pada Gambar II.4.

Gambar II.4 Proses energi pada reaksi kemiluminisensi / bioluminisensi untuk reaksi : $A + B \rightarrow C^* + D \rightarrow C + h\nu$ (Orchin dan Jaffe, 1980).

Gambar II.4 memperlihatkan proses energi untuk reaksi kemiluminisensi dimana ΔH_A adalah energi enthalpi yang tersimpan dalam reaktan dan ΔH_A^* adalah energi enthalpi 570/hd/2014 - p. (1)

aktivasi pada keadaan eksitasi yang selanjutnya relaksasi ke keadaan dasar sambil memancarkan cahaya tampak. Proses reaksi kemiluminisensi dapat terjadi jika $\Delta H_A^* < \Delta H_A$. Karena pada proses kemiluminisensi menyaratkan energi yang terlibat harus eksotermik maka reaksi terbatas hanya pada reaksi redoks yang menggunakan oksigen dan hidrogen peroxida atau oksidan potensial lainnya.

Mekanisme kedua adalah reaksi tidak langsung yang didasarkan atas transfer energi dari molekul tereksitasi ke molekul lain untuk memancarkan cahaya. Reaksi tidak langsung dapat dinyatakan sebagai berikut.

$$A+B \rightarrow P^* + D$$
 (II.5)

$$P^* + F \rightarrow P + F^* \tag{II.6}$$

$$F^* \rightarrow F + hv$$
 (II.7)

Dalam pers. II.5, intermediat keadaan eksitasi dibentuk oleh reaksi kimia. Selanjutnya energi kimia dalam intermediat kemudian ditransfer untuk mengeksitasi molekul lain F sesuai pers. II.6. Akhirnya kemiluminisensi terjadi ketika molekul tereksitasi mengalami relaksasi kembali ke keadaan dasar dengan memancarkan cahaya.

Selanjutnya informasi tentang proses kemiluminisensi akan diterapkan untuk menjelaskan energi aktivasi bioluminisensi pada bakteri bioluminisensi *Photobacterium* phosphoreum.

A CONTRACT OF A CONTRACTOR OF A CONTRACT OF	PRIME CARE AND	ALTER DEPENDENT AND A COMPANY	
ANN IK FIGPU	SZAKAAN U	HIV. HERERI PLAN	
MITERILA IC	1		
SUMBER/HAR		and the second se	- 1
MBL + KSL			
M.C. With La Initia		na olympiana na fadda ing an	é
/ SIFINASI	1		
A REAL PROPERTY AND A REAL	TRACK REPORT OF THE PARTY OF		· 1

BAB III. METODE PENELITIAN

Rancangan riset yang digunakan dalam penelitian ini adalah kajian teoritik atau simulasi komputasi. Simulasi komputasi diambil karena massa elektron atau proton yang terlibat dalam reaksi relatif kecil, maka efek kuantum seperti perubahan muatan dan pemutusan ikatan sangat sukar diobservasi di dalam eksperimen. Untuk mengatasi masalah ini, maka untuk melihat mekanisme pengaruh temperatur terhadap dinamika molekul (DM) pembentukan keadaan eksitasi dari reaksi LBPP dilakukan secara komputasi. Simulasi dilakukan dengan bantuan program Chemoffice 3D untuk mendapatkan koordinat internal molekul keadaan eksitasi 'akibat variasi temperature dan Metode Dinamika Molekul (DM) untuk menghitung perubahan enthalpy. Dari hasil simulasi kemudian dilakukan perhitungan teoritik besarnya energy bebas Gibbs molekul keadaan eksitasi dan selanjutnya dikorelasikan dengan besarnya energy emisi bakteri

A. Metode Dinamika Molekul.

Metode DM adalah sebuah metode yang menggambarkan gerak dari suatu molekul seperti getaran, peregangan ikatan, tekukan sudut, dan sebagainya berdasarkan penambahan atau pengambilan energi kinetik terhadap pertambahan atau pengurangan temperatur. Studi dinamika molekul bertujuan untuk mengeksplorasi keadaan molekul dan konformasi pengikatan subtrat-substrat pada senyawa-senyawa aktif secara biologi seperti protein atau enzim. Untuk kasus reaksi LBPP, metode DM digunakan untuk menyelidiki perubahan konformasi akibat pengaruh temperature. Perubahan konformasi (geometri) setiap keadaan temperatur akan mengubah susunan atom-atom sehingga akan mengubah energi potensialnya. Metode dinamika molekul didasarkan pada hukum Newton II

dimana F_i adalah gaya aksi pada atom ke i , m_i adalah massa atom ke i, a_i adalah percepatan atom-atom, r_i adalah posisi atom-atom, t adalah waktu. Dalam selang waktu Δt posisi atom dapat berubah berdasarkan uraian deret Taylor sebagai berikut

$$r(t + \Delta t) = r(t) + \frac{\partial}{\partial r} \Delta t + \frac{1}{2!} \frac{\partial}{\partial r^2} \Delta t^2 + \dots$$
(III.2a)

$$r(t - \Delta t) = r(t) - \frac{\partial}{\partial r} \Delta t + \frac{1}{2!} \frac{\partial}{\partial r^2} \Delta t^2 + \dots$$
(III.2b)

Selisih Pers.III.2(a) terhadap Pers. III.2(b) pada harga limit tertentu, dan hasilnya subtitusikan pada Pers. III.1 sehingga didapatkan gaya aksi pada atom-atom sebagai fungsi waktu

$$\frac{F_i}{m_i} = \lim_{\Delta t \to 0} \frac{r(t + \Delta t) - 2r(t) + r(t - \Delta t)}{\Delta t^2} = \frac{dr^2}{dt^2}$$
(III.3)

Hubungan antara gaya aksi pada atom-atom terhadap energi potensialnya dapat ditulis

 $\mathbf{F}_{\mathbf{I}} = -\nabla_{\mathbf{i}} \operatorname{Ep} \tag{III.4}$

dimana - ∇_i adalah gradien Ep terhadap koordinat posisi atom-atom. Secara eksplisit, Pers. (III.4) memperlihatkan hubungan antara energi potensial Ep system reaksi bioluminisensi terhadap waktu.

Simulasi DM dimulai dengan memilih konfigurasi awal dari setiap koordinat model dan kemudian dilakukan minimisasi energi. Semua keadaan reaksi disimulasikan secara bebas sampai 20 picosecond. Persamaan Newton diintegrasi dengan memakai pers. 3a dan 3b dengan step waktu waktu 2 femtoseconds. Selanjutnya setiap keadaan molekul dipanaskan sampai temperatur 300K selama 5 picosecond untuk mendapatkan keadaan keseimbangan. Ketika keseimbangan telah dicapai, data dikumpulkan untuk 15 picosecond berikutnya. Dalam penelitian ini metode DM diimplementasikan menggunakan paket program CS Chem3D versi 5.0.

B. Penentuan Koordinat Internal Molekul

ļ

1

į

Spesifikasi geometri internal menunjukkan posisi relatif antara dua atom terdekat yang membentuk ikatan kimiawi seperti yang diperlihatkan pada Gambar III.1.

Gambar III.1 Sistem geometri internal

Untuk spesifikasi ikatan ini diperlukan tiga besaran yaitu : jarak antar atom yang berikatan, sudut antara dua ikatan dalam satu bidang dan sudut antar bidang ikatan yang berdekatan. Format data secara lengkap dapat ditulis :

No	Panjang	Sudut	Sudut	Atom	Atom	Atom
Atom	Ikatan	Ikatan	Bidang	1	2	3

Untuk atom pertama cukup dinyatakan

	1 0 0	0	0	0	0
--	-------	---	---	---	---

Untuk atom kedua perlu dinyatakan panjang ikatan terhadap atom pertama

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
---	--

Untuk atom ketiga perlu dinyatakan panjang iktan terhadap atom kedua dan sudut ikatan yang dibentuk terhadap atom pertama

$\begin{vmatrix} 3 \\ r_{23} \end{vmatrix} < (r_{12}, r_{23}) \begin{vmatrix} 0 \\ 2 \end{vmatrix} \begin{vmatrix} 1 \\ 0 \end{vmatrix}$	3	r ₂₃	<(r ₁₂ , r ₂₃₎	0	2	1	0	
--	---	-----------------	--------------------------------------	---	---	---	---	--

Untuk atom keempat perlu dinyatakan panjang ikatan terhadap atom ketiga, sudut ikatan yang dibentuk terhadap atom kedua dan sudut antar bidang yang dibentuk oleh bidang atom keempat – ketiga – kedua dan bidang atom ketiga – kedua – pertama.

4	Г ₃₄	<(r ₂₃ , r ₃₄₎	$<(r_{23} \times r_{34})$	3	2	1	
			r ₁₂ x r ₂₃)				

Untuk atom-atom berikutnya berlaku hal yang sama. Untuk atom kelima karena atom ini tidak terikat pada atom keempat melainkan pada atom kedua, sehingga diberikan kebebasan untuk menyatakan sudut antar bidang ikatan yang berdekatan. Sedangkan sudut antara dua ikatan dalam satu bidang tidak berubah, yaitu dalam hal ini $<(r_{25}, r_{23})$.

5	r ₂₅	$<(r_{25}, r_{23})$	$<(r_{25} \times r_{23},$	2	3	1
			r ₂₃ x r ₁₂)			

atau

5	r ₂₅	<(r ₂₅ , r ₂₃₎	$<(r_{25} \times r_{23},$	2	3	4
			r ₂₃ x r ₃₄)			

dan variasi lainnya. Selanjutnya nomor atom digantikan dengan nama unsur atom yang dimaksud, misalnya H (hydrogen), C (karbon), N (nitrogen) dan O (oksigen) serta atom atom lainnya.

C. Profil Perbedaan Energi Potensial pada Reaksi LBPP

Untuk mendapatkan model mekanisme pemancaran cahaya pada LBPP, digunakan model kurva reaksi yang dikembangkan dari Gambar II.4 seperti diperlihatkan pada Gambar III.2.

Gambar III.2 Kurva perbedaan energi potensial pada reaksi LBPP.

Suatu reaksi pada Gambar III.2 dapat berlangsung bila molekul-molekul substrat mengalami keadaan aktif dengan energi aktivasi E_a . Dalam keadaan demikian ikatan dalam molekul dapat terputus atau bersatu sehingga memungkinkan terbentuknya produk. Keadaan molekul dimana substrat berada dalam keadaan aktif disebut keadaan transisi. Sedangkan energi aktivasi diartikan sebagai jumlah energi (dalam kalori) yang dibutuhkan oleh satu mol zat pada temperatur tertentu untuk membawa semua molekul (dari satu mol zat) ke keadaan aktifnya. Keadaan transisi memiliki energi bebas Gibbs, enthalpi dan energi potensial lebih tinggi dari keadaan yang berdekatan yang terletak pada lintasan tersebut.

BAB IV HASIL PENELITIAN

A. Deskripsi Data

Reaksi pembentukan keadaan eksitasi pada LBPP sesuai pers.II.1 s.d II.2 dapat diurai lagi sebagai berikut :

FMNH ₂	+ Asn	→ FMNH ⁺ +AsnH ⁺	(IV.1)
FMNH	+ O ₂	→ FMNHOO ⁻	(IV.2)
FMNHOO ⁻	+ LysH	\rightarrow FMNHOOH + Lys ⁻	(IV.3)
FMNHOOH	+ RCOH	\rightarrow FMNHOO-CHOH-R	(IV.4)
FMNHOO-CHOH-R	- RCOOH	→ FMNHOH*	(IV.5)

Dari hasil penelitian sebelumnya (Arief & Ratnawulan, 2006) diketahui sisi aktif dari LBPP adalah Asn yang merepresentasikan katalis asam yang berfungsi sebagai penerima proton dan Lys merepresentasikan katalis basa yang berfungsi sebagai pemberi proton.

Simulasi dinamika molekul dilakukan mulai dari pers. IV.1 sampai pers. IV.5. Setiap reaksi pada persamaan IV.1 sampai IV.5 dihitung parameter geometri (koordinat internal) berupa panjang ikatan, jarak antar atom, dan sudut ikatan Dari parameter geometri molekul untuk setiap reaksi kemudian dilakukan simulasi dinamika molekul untuk mendapatkan energy potensial sebagai fungsi waktu. Adapun parameter simulasi dinamika molekul dirangkum pada Gambar IV.1.

Job Type Oynamics Propertie	es General	ž.
Step Intervat	20	Is
Frame Interval:	10	
Terminate After:	10000	stops
1 . 1 1		
Heating/Cooling Rate:	1.000	Kcal/atom/ps
Target Temperature:	300	degrees Kelvin
Summary: Perameter Quality, S Job Type: Molecula _ Record Each Ner	Some parameter: ar Dynamics ation	s are guessed.

Gambar IV.1. Parameter dinamika molekul

Struktur geometri molekul untuk setiap reaksi dan koordinat internal di perlihatkan pada Gambar IV.2 sampai IV.6.

		Atom	Bond Atom	Bond Length	Angle Atom	First Angle:	Third Ato
	-	C(8)	-	-	-	-	
	-	C(10)	C[8]	1.414		-	-
	-	C[2]	C(8)	1.392	C(10)	117.898	-
	-	N(9)	C(8)	1.443	C(10)	116.160	C(2)
	-	C[12]	N(9)	1.410	C[8]	124.495	C(10)
	-	C[23]	C(12)	1.377	N(3)	117.592	C(8)
	-	N(22)	C[12]	1.412	C[23]	118.095	N(9)
and Th	-	N(11)	C(10)	1.405	C(8)	118.053	N(9)
	-	C[14]	C(10)	1.392	C(8)	120.659	N(11)
	-	C[24]	C(23)	1.477	C[12]	120.560	N(11)
	-	C[1]	C(2)	1.410	C(8)	121.939	C[10]
	-	C(16)	C[14]	1.406	C[10]	120.949	C[8]
PD. 105	-	C[26]	N[22]	1.370	C[12]	123.351	C(23)
	-	N(34)	C[24]	1.369	C(23)	115.061	C[12]
	-	C(5)	C[1]	1.512	C[2]	119.387	C[16]
	-	C(19)	C[16]	1.511	C[1]	121.316	C(14)
	-	C[1 3]	N(9)	1.479	CISI	117.222	C[12]
	-	0(30)	C[24]	1.223	C[23]	124.562	N(34)
		0[32]	C[26]	1.226	N(22)	122.481	N(34)
		H(3)	C(2)	1.100	C[1]	117.985	C[8]
		H(15)	C[1 4]	1.102	C[10]	119.092	C[16]
		H[25]	N(11)	1.049	C[10]	118.314	C(23)
		H(27)	N(22)	1.047	C[1 5]	120.224	C(26)
		H(35)	N(34)	1.007	C[24]	116.692	C(26)
		H(7)	C(5)	1.114	C(1)	110.015	C[16]
		H[18]	C(5)	1.113	C[1]	111.381	H(7)
		H(28)	C(5)	1.113	C(1)	112.344	H(7)
-							

Gambar IV.2. (a) Struktur geometri molekul $FMNH_2 + ASn$, (b) Koordinat internal Asn dan $FMNH_2$

Gambar IV.3. Struktur geometri molekul FMNH+ O_2 dan (b) Koordinat internalnya

Gambar IV.4. (a) Struktur geometri molekul FMNHOO⁻ + LysH ; (b) koordinat internalnya

Gambar IV.5. Struktur geometri molekul FMNHOOH + RCOH; (b) Koordinat internalnya

	Atom	Bond Atom	Bond Length	Angle Atom	First Angle	Third Ate
	- C(8)		-	-		
	- C[10]	C[8]	1.393	-		
	- C(2)	C(8)	1.406	C(10)	115.406	- 1
O Marine Car	- C(1)	C(2)	1.427	C(8)	122.927	C(1 0)
	C N(9)	C[8]	1.422	C(10)	118.103	C[2]
	C N(11)	C[10]	1.452	C[8]	120.118	N(9)
	C[12]	N[9]	1.404	C[8]	125.122	C(10)
	C[13]	N[9]	1.492	C(8)	121.490	C(12)
H18	C[14]	C(10)	1.379	C(8)	123.425	N(11)
HT9 To the test	C [16]	C[14]	1.365	C[10]	120.377	C(8)
	C [5]	C[1]	1.512	C(2)	121.288	C[16]
	C[1 3]	C(LE)	1.480	C(1)	123.428	C(1 4)
	C [2 3]	C(12)	1.375	N(9)	115.747	C(8)
	C N(22)	C[1 2]	1.361	C(23)	121.676	N(9)
	C (24)	C(23)	1.430	C(12)	118.921	N(11)
	C [26]	N(22)	1.376	C(12)	123.346	C[23]
	C N(34)	C[24]	1.305	C[23]	113.504	C[12]
	a 0(30)	C[24]	1.243	C[23]	125.652	N(34)
	C 0[32]	C[26]	1.282	N(22)	125.218	N(34]
	C H(3)	C(2)	1.138	C(8)	117.923	C(1)
	G H(7)	C(5)	1.155	C(1)	103.409	C(2)
	CH(18)	C(5)	1.153	C(1)	110.460	H(7)
	O H(28)	C[5]	1.105	C[1]	105.012	H(7)
	a H(25)	N(11)	1.023	C(10)	119.744	C[23]
	C H(17)	C(1 3)	1.136	N(3)	114.307	C[12]
H∰ U	C H(29)	C[1 3]	1.122	N(3)	113.125	H[17]
	G H(33)	C(1 3)	1.100	N(9)	104.524	H(17]
	CH(15)	C[14]	1.036	C(10)	121.451	C(16)

Gambar IV.6. Struktur geometri molekul tereksitasi FMNHOH*; (b) Koordinat internalnya

B. Analisa Data

Gambar IV.7 : Energi potensial fungsi waktu FMNH + Asn

Gambar IV.7 memperlihatkan setiap interaksi substrat-substrat FMNH₂, dengan dudukan aktif LBPP yaitu Asn diikuti dengan perubahan konformasi (geometri) sehingga mengubah panjang ikatan susunan atom-atom yang selanjutnya

menyebabkan perubahan energi potensial terhadap waktu. Perubahan energy potensial rata-rata terhadap fungsi waktu dapat dihitung yaitu sebesar 218 kkal/mol atau 9,45 eV (1 eV = 23,06035 kkal/mol).

Hasil dinamika molekul FMNH+O2 diperlihatkan pada Gambar IV.8.

Gambar IV.8. Energi potensial molekul FMNH+O2

Gambar IV.8 memperlihatkan setiap interaksi substrat-substrat FMNH dengan O_2 diikuti dengan perubahan konformasi (geometri) sehingga mengubah panjang ikatan susunan atom-atom yang selanjutnya menyebabkan perubahan energi potensial terhadap waktu. Perubahan energy potensial rata-rata terhadap fungsi waktu dapat dihitung yaitu sebesar 279 kkal/mol atau 12,11 eV.

Hasil dinamika molekul reaksi FMNHOO⁻ + LysH diperlihatkan pada Gambar IV.9

Gambar IV.9. Energi potensial fungsi waktu FMNHOO⁻ + LysH

Gambar IV.9 memperlihatkan setiap interaksi substrat-substrat FMNHOO dengan dudukan aktif LBPP yaitu LysH diikuti dengan perubahan konformasi (geometri) sehingga mengubah panjang ikatan susunan atom-atom yang selanjutnya menyebabkan perubahan energi potensial terhadap waktu. Perubahan energy potensial rata-rata terhadap fungsi waktu dapat dihitung yaitu sebesar 339 ,66 kkal/mol atau 14,73 eV.

Hasil dinamika molekul reaksi FMNHOOH + RCOH diperlihatkan pada Gambar IV.10

Gambar IV.10. Energi potensial fungsi waktu FMNHOOH + RCOH
Gambar IV.10 memperlihatkan setiap interaksi substrat-substrat FMNHOOH dengan RCOH diikuti dengan perubahan konformasi (geometri) sehingga mengubah panjang ikatan susunan atom-atom yang selanjutnya menyebabkan perubahan energi potensial terhadap waktu. Perubahan energy potensial rata-rata terhadap fungsi waktu dapat dihitung yaitu sebesar 234, 72 kkal/mol atau 10,18 eV.

Gambar IV.11 . Energi potensial fungsi waktu molekul eksitasi FMNHOH*

Gambar IV.11 memperlihatkan pembentukan molekul keadaan eksitasi FMNHOH*. Setiap interaksi dengan molekul lain juga diikuti dengan perubahan konformasi (geometri) sehingga mengubah panjang ikatan susunan atom-atom yang selanjutnya menyebabkan perubahan energi potensial terhadap waktu. Perubahan energy potensial rata-rata terhadap fungsi waktu dapat dihitung yaitu sebesar 280 kkal/mol atau 10,84 eV.

Berdasarkan hasil simulasi dinamika molekul yang telah diperlihatkan dalam Gambar IV.7 sampai IV.11, dapat dibuat diagram tingkat energy dari bakteri bioluminisensi yang diperlihatkan pada Gambar IV.12.

Gambar IV.12. Model tingkat energi aktivasi bakteri luminisensi berdasarkan dinamika molekul pada pusat reaksi.

Pembentukan keadaan eksitasi dapat dijelaskan berdasarkan Gambar V.12. Pengikatan FMNH₂ dengan sisi aktif Asn menyebabkan molekul memiliki energy potensial rata-rata sebesar 218 kkal/mol atau 9,45 eV. Selanjutnya oksidasi dengan molekul O₂, pusat reaksi mengalami keadaan aktifnya dengan energi aktivasi $E_a = 61$ kkal/mol atau 0,65 eV. Pengikatan selanjutnya dengan sisi aktif LysH menambah keadaan aktif pusat reaksi dengan energy aktivasi tambahan sebesar 60 kkal/mol atau sebesar 0,60 eV. Penambahan substrat RCOH menyebabkan terjadi penurunan energy potensial rata-rata pusat reaksi untuk secara secara spontan meluruh melepaskan RCOOH sehingga terbentuk keadaan eksitasi dengan energi aktivasi sebesar 16 kkal/mol atau 0,69 eV.

C. Pembahasan

Hasil dinamika molekul pembentukan keadaan eksitasi pada bakteri Photobacterium phosphoreum diperoleh energy aktivasi keadaan eksitasi adalah sebesar 16 kkal/mol atau 0,69 eV. Hasil ini berbeda sedikit dengan hasil pengukuran dimana diperoleh besar energy aktivasi keadaan eksitasi adalah 0,82 eV (Arief & Ratnawulan, 2006). Perbedaan hasil pehitungan dengan hasil pengukuran adalah sebesar 0,11 eV. Dengan kata lain terdapat kesalahan perhitungan sebesar 15 %.

Kesalahan yang cukup besar ini diduga disebabkan oleh kurang memperhitungkan jarak antar dua molekul seperti penambahan molekul FMNH₂ dengan molekul Asn. Jarak pengikatan yang terlalu jauh menyebabkan sulitnya molekul berinteraksi satu sama lain. Penyebab yang lain adalah molekul FMNH₂ yang digunakan dalam simulasi ini agak berbeda jenisnya dengan molekul FMNH₂ yang dipunyai oleh bakteri. Walau demikian dapat disimpulkan bahwa perubahan energi aktivasi pembentukan keadaan eksitasi yang diperoleh secara komputasi mendekati nilai perubahan energi aktivasi yang diperoleh secara eksperimen berdasarkan analisis karakteristik fisis pemancaran cahaya.

Beberapa aspek dinamika molekul yang dapat dijelaskan adalah setiap interaksi substrat-substrat FMNH₂, O₂, dan RCOH dengan dudukan aktif LBPP yaitu Asn dan Lys diikuti dengan perubahan konformasi (geometri) sehingga mengubah panjang ikatan susunan atom-atom yang selanjutnya menyebabkan perubahan energi potensial terhadap waktu. Perubahan konformasi ini dapat diinterpretasi bahwa selama reaksi, atom-atom berinteraksi satu sama lain sehingga gaya aksi akan mengubah posisi atom-atom terhadap yang lainnya sehingga akan mengubah struktur geometrinya. Bukti perubahan konformasi dari luciferase selama reaksi bioluminisensi juga dilaporkan oleh Li dan Meighen (1994).

BAB V. KESIMPULAN DAN SARAN

A. Kesimpulan

Dalam penelitian ini telah dikaji energy aktivasi pusat reaksi bakteri bioluminisensi *Photobacterium phosphoreum* melalui kajian dinamika molekul menggunakan *software* Chem3D. Karakteristik energi aktivasi dan urutan reaksi LBPP memperlihatkan bahwa pengikatan FMNH₂ dengan sisi aktif Asn menyebabkan molekul memiliki energy potensial rata-rata sebesar 218 kkal/mol atau 9,45 eV. Selanjutnya oksidasi dengan molekul O₂, pusat reaksi mengalami keadaan aktifnya dengan energi aktivasi E_a = 61 kkal/mol atau 0,65 eV. Pengikatan selanjutnya dengan sisi aktif LysH menambah keadaan aktif pusat reaksi dengan energy aktivasi tambahan sebesar 60 kkal/mol atau sebesar 0,60 eV. Penambahan substrat RCOH menyebabkan terjadi penurunan energy potensial rata-rata pusat reaksi untuk secara secara spontan meluruh melepaskan RCOOH sehingga terbentuk keadaan eksitasi dengan energi aktivasi sebesar 16 kkal/mol atau 0,69 eV.

Hasil analisis pengukuran energy aktivasi bakteri *Photobacterium phosphoreum* secara eksperimen memberikan besar energy aktivasi keadaan eksitasi adalah 0,82 eV. Perbedaan hasil pehitungan dengan hasil pengukuran adalah sebesar 0,11 eV. Dengan kata lain terdapat kesalahan perhitungan sebesar 15 %.

B. Saran

Berdasarkan hasil penelitian ini, maka saran untuk penelitian lanjutan adalah:

- 1. Oleh karena masih terdapat kesalahan relatif yang cukup besar (KR>10%), maka penelitian lanjutan diperlukan dengan memperhitungkan jarak antar molekul yang berikatan.
- 2. Untuk memodelkan struktur FMNH₂, dibutuhkan informasi mengenai spesifikasiFMNH₂ yang dimiliki bakteri *Photobacterium phosphoreum*.

DAFTAR PUSTAKA

- Arif, I dan Ratnawulan, (2006), Determination of Site Residues Involved In The Emission of Visible Light F rom Photobacterium phosphoreum Bacteria.
 Seminar Internasional ICMN (20 November 2006) MIPA, ITB.
- Balny, C dan Hasting, J.W, (1975), Fluorescence and Bioluminescence of Bacterial Luciferase Intermediates, *Biochemistry*, 14, 4719 4723.
- Biron, K. (2003) : Fireflies, Dead Fish and a Glowing Bunny: a Primer on Bioluminescence, J.Bio.Teach., 1, 19 25.
- Choi, H., Tang, C.K., dan Tu, S.C.. (1995): Catalytically Active Forms of the Individual Subunits of Vibrio harveyi Luciferase and Their kinetic and Binding Properties, J. Biol. Chem., 270, 16813 – 16819.
- Fisher, A.J., Raushel, F.M., Baldwin, T.O., dan Rayment, I. (1995) : Three-Dimensional Structure of Bacterial Luciferase from Vibrio harveyi at 2.4 A Resolution, Abstract, *Biochemistry*, 34, 6581 – 6586.
- Fisher, A.J., Thompson, T.B., Thoden, J.D., Baldwin, T.O., dan Rayment, I. (1996): The 1,5 A Resolution Crystal Structure of Bacterial Luciferase in Low Salt Conditions, J. Biol. Chem., 271, 21956 – 219678
- Floyd, E R., (1997), Bermuda Triangle Continues to Mystify. The Augusta Chronicle Online <u>http://www.augustachronicle.com/stories/030297</u>.
- Flynn, G.C., Beckers, C.J.M., Baase, W.A., dan Dahlquist, F.W. (1993) : Individual Subunits of Bacterial Luciferase are Molten Globules and Interact with Molecular Chaperones, Proc. Natl. Acad, Sci, USA, 90, 10826 – 10830
- Garcia, Campana., Baeyens, AM., Zhang, X., Ales, F., and Gamiz, F., (2001), Unfamiliar thoug exciting analytical detection in flowing streams: chemiluminescence, Ars Pharmaceutica, Vol. 42(1), p.81-107
- Hasting, J.W. (1971) : Ventral Luminescence to Camouflage the Silhouete, Science, 173, 1016-1017.
- Hasting, J.W, Balny, C, Peuch, C.L, dan Douzou, P. (1973) : Spectral Properties of an Oxygenated Luciferase-Flavin Intermediate Isolated by Low-Temperature Chromatography, *Proc.Nat.Acad. Sci.USA*, 70, 3468 3472.
- Holt, J.G., Krieg, N.R., Sneath, P.H.A., Staley, J.T., dan Williams, S.T. (1994) : Bergey's Manual of Determinative bacteriology, 9th Edition, Williams & Wilkins, USA.

- Kratasyuk., V.A, Asimbekova., E.N, and Vetrova., E.V, (2004), Enzyme-based biosensor based on bacterial bioluminescence for environmental monitoring, 13 th International Symposium on Bioluminescence & Chemiluminescence Symposium Abstract.
- Kudryasheva N.S., Shalayeva E.V., Zadorochnaya E.N., Stom D.J., Kratasyuk V.A., and Balayan A.E.,(1994), Patterns of bacterial bioluminescence inhibition in vitro by quinones and phenols-component of sewage, Biofizika Vol. 39, p.455-464.
- Kudryasheva N.S., Nemtseva, E.V., and Kirillova, T.N., 2004, Exogenous compounds in studying the mechanisms of electron-excited state formation in bioluminescence, Biopolymers, Vol.74, p.100-104.
- Kruse, M, dan Boyle, R. (2000) : <u>http://library.thinkquest.org/COO5358</u> index2.htm? tqskip1=1&tqtime=0429.
- Kurfurst, M., Ghisla, S., dan Hasting, J.W. (1984) : Characterization and Postulated Structure of The Primary Emitter in The Bacterial Luciferase Reaction, *Proc.Natl.Acad.Sci.USA*, 81, 2990 - 2994.
- Lee, J.D.J., O'Kane., dan Gibson., B.G. (1988) : Dynamic Fluorescence Properties of Bacterial Luciferase Intermediates, *Biochemistry*, 25, 8062 8067
- Madden, D., and Lidesten, B.M., (2001), Bacterial illumination; culturing luminous bacteria, Bioscience Explained, Vol.1(1Macheroux, P., Ghisla, S., dan hasting, J.W. (1993): Spectral Detection of an Intermediate Preceding The Excited State in The Bacterial Luciferase Reaction, *Biochemistry*, 32, 14183 14186.
- Matheson, I.B.C., Lee, J., dan Muller, F. (1981) : Bacterial Bioluminescence: Spectral Study of The Emitters in The In Vitro Reaction, *Proc.Natl.Acad.Sci.USA*, 78, 948 952.
- Meighen, E.A., dan Bartlet, I. (1980) : Complementation of Subunits from Different Bacterial Luciferases ; Evidence for The Role of The β Subunit in The Bioluminescent Mechanism, *J.Biol.Chem*, 255, 11181 -11187.
- Meyer-Rochow, V.B. (2001) : Light of My Life-Messages in The Dark. Biologist (London) 48, 163 165.
- Swanson, R., Weaver, L.H., Remingtong, S.J., Matthewsg, B.W., dan Baldwin, T.O. (1985) : Crystals of Luciferase from Vibrio harveyi; A preliminary characterization, J.Biol.Chem, 260, 1287 - 1289.
- Tu, S.C. (1979) : Isolation and Properties of Bacterial Luciferase-Oxygenated Flavin Intermediate Complexed with Long-Chain Alcohols, *Biochemistry*, 79, 5940-5945.
- Pringgenies, D., Sastrodiharjo, S., Nganro, N.R., dan Aryantha, I.N., (2001), Bacteria symbiosis in luminous organ of the squid *Loligo* duvaucel and cuttlefish Sepia

esculenta, Phuket Marine Biology Centre (Thailand). Spec. Publ. Vol. 22. No.11, p.145-146

- Ratnawulan., Arif,I., Sukirno dan Loeksmanto,W. (2006a): Formation of Excitation Condition at *Photobacterium phosphoreum* That Isolated From The Indonesian marine Squid. Photochemistry and Photobiology American Society for Photobiology (submited)
- Ratnawulan., Arif,I., Sukirno dan Loeksmanto,W. (2006b) : Spectral Properties of Bacteria Symbiosis in Luminous Organ of The Squid Loligo Duvaceuli, *Journal* of Bioluminescence and Chemiluminescence (Accepted).
- Ratnawulan, Pringgenis, D., dan Arif, I. (2005) : Isolasi dan Identifikasi Bahan Aktif Penyebab Pemancaran cahaya Pada Bakteri *Photobacterium phosphoreum* yang di isolasi dari Cumi laut Indonesia, *J. Makara Seri Sains*, Vol. 9(1), FMIPA Universitas Indonesia.
- Ratnawulan, Papilaya, E., Arif, I., Sukirno dan Loeksmanto, W. (2004): Pola Dan Aktivitas Dari Bakteri Bioluminisensi Yang Diisolasi Dari Cumi-Cumi Laut Indonesia, The First, Jogya Regional Physics Conference, Proceedings, September 11, 2004.
- Ratnawulan, (2011), Pengaruh Logam Berat Terhadap Inhibisi dan Aktivitas Intensitas Bioluminisensi dari Bakteri, Prosiding Seminar nasional Fisika Universitas Andalas.
- Vervoort, J., Muller, F., O'Kane, D.J., Lee, J., dan Bacher, A. (1986(b)) : Bacterial Luciferase: A Carbon-13, Nitrogen-15, and Phosphorus-31 Nuclear Magnetic Resonance Investigation, *Biochemistry*, 25, 8067 -8075
- Vervoort, J., Muller, F, Lee, J., Van den Berg, W.A.M., dan Moonen, C.T.W. (1986 (a)) : Identifications of the True Carbon-13 Nuclear Magnetic Resonance Spectrum of The Stable Intermediate II in Bacterial Luciferase, *Biochemistry*, 25, 8062 -8067.
- Waddle, J., dan Baldwin, T..O. (1991) : Individual alpha and beta subunits of bacterial luciferase exhibit bioluminescence activity, *Biochem Biophys. Res. Commun*, 178, 1188-1193.

LAMPIRAN I ARTIKEL PUBLIKASI

ENERGI AKTIVASI BAKTERI BIOLUMINISENSI DITINJAU DARI DINAMIKA MOLEKUL PUSAT REAKSI

Ratnawulan Jurusan Fisika FMIPA Universitas Negeri Padang Jl. Prof Dr. Hamka Air Tawar Padang, 25131, Telp (0751)51260, 57720 Pes. 273, Fax (0751) 55628, e-mail: ratna_unp@yahoo.com

ABSTRAK

Emisi atau pemancaran cahaya dari bakteri *Photobacterium phosphorium* yang diisolasi dari cumi laut Indonesia melibatkan enzim yang disebut luciferase dan disingkat LBPP. Walaupun sudah banyak informasi ilmiah yang dihasilkan dari penelitian bakteri luminisensi lokal ini, bagaimana struktur dasar dari pusat reaksi bioluminisensi bakteri yaitu model tingkat energi aktivasinya, sampai sekarang masih belum diketahui. Informasi ini penting untuk merubah warna cahaya yang dihasilkan bakteri dengan variasi warna-warna yang lain seperti halnya boiled (merah, kuning, hijau, jingga dsb). Tujuan penelitian ini adalah mendapatkan model tingkat energi aktivasi bakteri bioluminisensi melalui kajian dinamika molekul.

Metode yang digunakan pada penelitian ini adalah kajian teoritik menggunakan simulasi komputasi. Simulasi dilakukan dengan bantuan program Chemoffice 3D untuk mendapatkan koordinat internal molekul keadaan eksitasi` dan metode dinamika molekul (DM) untuk menghitung perubahan enthalpy. Dari hasil simulasi kemudian dilakukan perhitungan teoritik besarnya energy aktivasi molekul keadaan eksitasi dan selanjutnya dikorelasikan dengan besarnya energy aktivasi emisi bakteri yang diperoleh melalui pengukuran.

Hasil analisis pengukuran energy aktivasi bakteri *Photobacterium phosphoreum* secara simulasi dinamika molekul memberikan besar energy aktivasi keadaan eksitasi adalah 0,69 eV, sedangkan hasil eksperimen adalah 0,82 eV. Perbedaan hasil pehitungan dengan hasil pengukuran adalah sebesar 0,11 eV. Dengan kata lain terdapat kesalahan perhitungan sebesar 15 %.

Kata kunci : Bakteri Photobacterium phosphoreum, dinamika molekul, energy aktivasi

I. Pendahuluan

Sejak diketahui bahwa bahan bioaktif yang berasal dari organisme luminisensi mempunyai implikasi yang besar dalam berbagai bidang seperti kesehatan lingkungan maupun industri, maka eksplorasi bahan bioaktif seperti enzim luciferase dari berbagai sumber menarik perhatian para ilmuwan (Biron, (2003), Kratasyuk, dkk (2004)). Apalagi dari hasil penelitian, diketahui bahwa efisiensi kuantum pemancaran cahaya dalam keadaan in vitro mencapai 90 %, kontras dengan efisiensi cahaya dari bola lampu listrik yang hanya 20 % (80 % hilang dalam bentuk panas dan bunyi) (Hasting, 1998). Mengingat besarnya nilai batas efisiensi cahaya yang dihasilkan, maka enzim ini berpotensi untuk berbagai aplikasi, salah satunya adalah untuk lampu estetika di rumahrumah. Realisasi dan komersialisasi aplikasi tersebut diharapkan akan memberikan dampak pada teknologi bioLED.

Dari sejumlah besar enzim luciferase yang ada, enzim luciferase dari bakteri Photobacterium phosphorium yang berpotensi paling baik bagi aplikasi tersebut ini disebabkan enzim luciferase dari bakteri Photobacterium phosphorium menghasilkan pemancaran cahaya paling terang dari semua enzim luciferase yang ada (Madden & Lidesten, 2001) dan banyak terdapat di daerah tropis seperti Indonesia. Pringgenies (2001) telah melakukan penyelidikan tentang bakteri ini dan menyimpulkan bahwa cahaya yang dipancarkannya disebabkan hubungan simbiosa antara cumi-cumi jenis Laligo duvaucelli dengan bakteri Photobacterium phosphoreum yang hidup didalamnya. Akibat interaksi antara cumi dengan bakteri dalam proses simbiosis tersebut mengakibatkan cumi jenis Laligo duvaucelli memancarkan cahaya sehingga terjadi peristiwa yang disebut bioluminesensi.

Proses pemancaran cahaya dari bakteri *photobacterium phosphorium* melibatkan enzim luciferase yang selanjutnya disebut luciferase dari bakteri *photobacterium phosphorium* (LBPP) mengkatalis tiga substrat yaitu flavin tereduksi (FMNH₂), molekul oksigen (O₂) dan aldehyd rantai panjang (RCOH). Reaksi tersebut membebaskan flavin (FMN), asam fatty rantai panjang (RCOOH), molekul air (H₂O) sambil memancarkan cahaya tampak berwarna biru(hv). Pada keadaan tereksitasi elektron tidak stabil dan akan kembali ke tingkat dasarnya sambil melepaskan foton dalam bentuk cahaya yang berwarna biru (Ratnawulan dkk, (2004)).

Untuk memenuhi persyaratan praktis/komersial diperlukan kriteria enzim bersangkutan perlu dipersiapkan dalam bentuk murni yang stabil dengan karakteristik pemancaran yang optimum. Ratnawulan dkk (2005 & 2004) telah berhasil mengisolasi dan memurnikan enzim luciferase dari LBPP yang diperoleh dari cumi-cumi laut Indonesia beserta karakteristik pemancaran optimumnya nya. Walaupun sudah banyak informasi ilmiah yang tersedia untuk bakteri luminisensi lokal ini, seperti: penyebab, karakteristik dan mekanisme bioluminisensi bakteri, dan perubahan perilaku fisis system biolumisensi akibat keberadaan logam berat (Ratnawulan, dkk, 2005, 2006a, 2006b, 2011) tetapi bagaimana merubah warna cahaya yang dihasilkan bakteri dengan variasi warna-warna yang lain seperti halnya bioLed, sampai sekarang merupakan objek penelitian pada bidang Fisika bioluminisensi. Secara teoritis, untuk dapat merubah atau merekayasa warna-warna cahaya yang ada, maka terlebih dahulu harus tahu dulu struktur dasar tingkat energi aktivasi dari bakteri luminisensi. Oleh karena itu diperlukan penelitian tentang pemodelan tingkat energi aktivasi bakteri berdasarkan dinamaka molekul.

II. Metode Penelitian

Rancangan riset yang digunakan dalam penelitian ini adalah kajian teoritik atau simulasi komputasi. Simulasi komputasi diambil karena massa elektron atau proton yang terlibat dalam reaksi relatif kecil, maka efek kuantum seperti perubahan muatan dan pemutusan ikatan sangat sukar diobservasi di dalam eksperimen. Untuk mengatasi masalah ini, maka untuk melihat mekanisme pengaruh temperatur terhadap dinamika molekul (DM) pembentukan keadaan eksitasi dari reaksi LBPP dilakukan secara komputasi. Simulasi dilakukan dengan bantuan program Chemoffice 3D untuk mendapatkan koordinat internal molekul keadaan eksitasi`akibat variasi temperature dan Metode Dinamika Molekul (DM) untuk menghitung perubahan enthalpy. Dari hasil simulasi kemudian dilakukan perhitungan teoritik besarnya energy bebas Gibbs molekul keadaan eksitasi dan selanjutnya dikorelasikan dengan besarnya energy emisi bakteri

A. Metode Dinamika Molekul.

Metode DM adalah sebuah metode yang menggambarkan gerak dari suatu molekul seperti getaran, peregangan ikatan, tekukan sudut, dan sebagainya berdasarkan penambahan atau pengambilan energi kinetik terhadap pertambahan atau pengurangan temperatur. Studi dinamika molekul bertujuan untuk mengeksplorasi keadaan molekul dan konformasi pengikatan subtrat-substrat pada senyawa-senyawa aktif secara biologi seperti protein atau enzim. Untuk kasus reaksi LBPP, metode DM digunakan untuk menyelidiki perubahan konformasi akibat pengaruh temperature. Perubahan konformasi (geometri) setiap keadaan temperatur akan mengubah susunan atom-atom sehingga akan mengubah energi potensialnya. Metode dinamika molekul didasarkan pada hukum Newton II

dimana F_i adalah gaya aksi pada atom ke i , m_i adalah massa atom ke i, a_i adalah percepatan atom-atom, r_i adalah posisi atom-atom, t adalah waktu. Dalam selang waktu Δt posisi atom dapat berubah berdasarkan uraian deret Taylor sebagai berikut

$$r(t + \Delta t) = r(t) + \frac{\partial}{\partial r} \Delta t + \frac{1}{2!} \frac{\partial}{\partial r^2} \Delta t^2 + \dots$$
(2a)

$$r(t - \Delta t) = r(t) - \frac{\partial}{\partial r} \Delta t + \frac{1}{2!} \frac{\partial}{\partial r^2} \Delta t^2 + \dots$$
(2b)

Selisih Pers..2(a) terhadap Pers. III.2(b) pada harga limit tertentu, dan hasilnya subtitusikan pada Pers. 1 sehingga didapatkan gaya aksi pada atom-atom sebagai fungsi waktu

$$\frac{F_i}{m_i} = \lim_{\Delta \to 0} \frac{r(t+\Delta t) - 2r(t) + r(t-\Delta t)}{\Delta t^2} = \frac{dr^2}{dt^2}$$
(3)

Hubungan antara gaya aksi pada atom-atom terhadap energi potensialnya dapat ditulis

$$\mathbf{F}_{i} = -\nabla_{i} \operatorname{Ep} \tag{.4}$$

dimana $-\nabla_i$ adalah gradien Ep terhadap koordinat posisi atom-atom. Secara eksplisit, Pers. (4) memperlihatkan hubungan antara energi potensial Ep system reaksi bioluminisensi terhadap waktu.

Simulasi DM dimulai dengan memilih konfigurasi awal dari setiap koordinat model dan kemudian dilakukan minimisasi energi. Semua keadaan reaksi disimulasikan secara bebas sampai 20 picosecond. Persamaan Newton diintegrasi dengan memakai pers. 3a dan 3b dengan step waktu waktu 2 femtoseconds. Selanjutnya setiap keadaan molekul dipanaskan sampai temperatur 300K selama 5 picosecond untuk mendapatkan keadaan keseimbangan. Ketika keseimbangan telah dicapai, data dikumpulkan untuk 15

picosecond berikutnya. Dalam penelitian ini metode DM diimplementasikan menggunakan paket program CS Chem3D versi 5.0.

B. Penentuan Koordinat Internal Molekul

Spesifikasi geometri internal menunjukkan posisi relatif antara dua atom terdekat yang membentuk ikatan kimiawi seperti yang diperlihatkan pada Gambar 1.

Gambar 1 Sistem geometri internal

Untuk spesifikasi ikatan ini diperlukan tiga besaran yaitu : jarak antar atom yang berikatan, sudut antara dua ikatan dalam satu bidang dan sudut antar bidang ikatan yang berdekatan. Format data secara lengkap dapat ditulis :

No	Panjang	Sudut	Sudut	Atom	Atom	Atom
Atom	Ikatan	Ikatan	Bidang	1	2	3

Untuk atom pertama cukup dinyatakan

|--|--|

Untuk atom kedua perlu dinyatakan panjang ikatan terhadap atom pertama

Untuk atom ketiga perlu dinyatakan panjang iktan terhadap atom kedua dan sudut ikatan yang dibentuk terhadap atom pertama

	3 r_{23} <(r_{12} ,	r ₂₃₎ 0	2	1	0	
--	--------------------------	--------------------	---	---	---	--

Untuk atom keempat perlu dinyatakan panjang ikatan terhadap atom ketiga, sudut ikatan yang dibentuk terhadap atom kedua dan sudut antar bidang yang dibentuk oleh bidang atom keempat – ketiga – kedua dan bidang atom ketiga – kedua – pertama.

4	r ₃₄	$<(r_{23}, r_{34})$	<(r ₂₃ x r ₃₄ ,	3	2	1	
			r ₁₂ x r ₂₃)				

Untuk atom-atom berikutnya berlaku hal yang sama. Untuk atom kelima karena atom ini tidak terikat pada atom keempat melainkan pada atom kedua, sehingga diberikan kebebasan untuk menyatakan sudut antar bidang ikatan yang berdekatan. Sedangkan sudut antara dua ikatan dalam satu bidang tidak berubah, yaitu dalam hal ini $<(r_{25}, r_{23})$.

5	r ₂₅	<(r ₂₅ , r ₂₃₎	$<(r_{25} \times r_{23},$	2	3	1
			r ₂₃ x r ₁₂)			

atau

5	r ₂₅	<(r ₂₅ , r ₂₃₎	<(r ₂₅ x r ₂₃ ,	2	3	4	
			r ₂₃ x r ₃₄)				

dan variasi lainnya. Selanjutnya nomor atom digantikan dengan nama unsur atom yang dimaksud, misalnya H (hydrogen), C (karbon), N (nitrogen) dan O (oksigen) serta atomatom lainnya.

C. Profil Perbedaan Energi Potensial pada Reaksi LBPP

Untuk mendapatkan model mekanisme pemancaran cahaya pada LBPP, digunakan model kurva reaksi yang diperlihatkan pada Gambar 2.

Proses reaksi

Gambar 2 Kurva perbedaan energi potensial pada reaksi LBPP.

Suatu reaksi pada Gambar 2 dapat berlangsung bila molekul-molekul substrat mengalami keadaan aktif dengan energi aktivasi E_a. Dalam keadaan demikian ikatan dalam molekul dapat terputus atau bersatu sehingga memungkinkan terbentuknya produk. Keadaan molekul dimana substrat berada dalam keadaan aktif disebut keadaan transisi. Sedangkan energi aktivasi diartikan sebagai jumlah energi (dalam kalori) yang dibutuhkan oleh satu mol zat pada temperatur tertentu untuk membawa semua molekul (dari satu mol zat) ke keadaan aktifnya. Keadaan transisi memiliki energi bebas Gibbs, enthalpi dan energi potensial lebih tinggi dari keadaan yang berdekatan yang terletak pada lintasan tersebut.

III. Hasil dan Pembahasan

A. Deskripsi Data

Reaksi pembentukan keadaan eksitasi pada LBPP diurai lagi sebagai berikut :

FMNH ₂	+ Asn	\rightarrow FMNH ⁻ +AsnH ⁺	(5)
FMNH	+ O ₂	→ FMNHOO	(6)
FMNHOO ⁻	+ LysH	→ FMNHOOH + Lys	(7)
FMNHOOH	+ RCOH	→ FMNHOO-CHOH-R	(8)
FMNHOO-CHOH-R	- RCOOH	→ FMNHOH*	(9)

Dari hasil penelitian sebelumnya (Arief & Ratnawulan, 2006) diketahui sisi aktif dari LBPP adalah Asn yang merepresentasikan katalis asam yang berfungsi sebagai penerima proton dan Lys merepresentasikan katalis basa yang berfungsi sebagai pemberi proton.

Simulasi dinamika molekul dilakukan mulai dari pers. 5 sampai pers. 9. Setiap reaksi pada persamaan 5 sampai 9 dihitung parameter geometri (koordinat internal) berupa panjang ikatan, jarak antar atom, dan sudut ikatan Dari parameter geometri molekul untuk setiap reaksi kemudian dilakukan simulasi dinamika molekul untuk mendapatkan energy potensial sebagai fungsi waktu. Adapun parameter simulasi dinamika molekul dirangkum pada Gambar 3.

lob Type Dynamics Prop	verties General		
Step Interval	20	ts	
Frame Interval	10	13	
🔽 Terminate After	10000	steps	
Moating/Cooling Rate	»: [1.000	Kcal/atom/ps	
Target Temperatur	o: 300	degrees Kelvin	
ummary: Perameter Qual Job Type: Mole	ity: Some parameter cular Dynamics	s are guessed.	
Step Intervat 2	.O Is		

Gambar 3 Parameter dinamika molekul

Struktur geometri molekul untuk setiap reaksi dan koordinat internal di perlihatkan pada Gambar 4 sampai 9.

		Atom	Bond Atom	Bond Length	Angle Atom	First Angle	Third Ato
	-	C[8]	-	-	-	-	
	-	C[1 0]	C(8)	1.414	-	-	
	-	C(2)	C[8]	1.392	C(10)	117.898	
	-	N(9)	C(8)	1.443	C(10)	116.160	C(2)
	-	C[1 2]	N(9)	1.410	C(8)	124.495	C(10)
	-	C[23]	C(12)	1.377	N(9)	117.592	C(8)
	-	N[22]	C(12)	1.412	C[23]	118.095	N(9)
and the second	-	N(11)	C(1 0)	1.405	C[8]	118.853	N(9)
	-	C[14]	C(10)	1.392	C(8)	120.659	N(11)
	-	C[24]	C[23]	1.477	C[12]	120.560	N(11)
	-	cul	C(2)	1.410	C(8]	121.939	C(10)
	-	C[16]	C[14]	1.408	C[10]	120.949	C (8)
F15. B175	-	C[26]	N(22)	1.370	C(12)	123.351	C[23]
	-	N(34)	C[24]	1.369	C[23]	115.061	C[12]
	-	CIE	C[1]	1.512	C(2)	119.387	C[16]
	-	C[19]	C[16]	1.511	C[1]	121.316	C(14)
	-	C[13]	N(9)	1.479	C(8)	117.222	C[12]
	-	0(30)	C(24)	1.223	C[23]	124.562	N(34)
	-	0[32]	C[26]	1.226	N(22)	122.481	N(34)
	-	H(3)	C(2)	1.100	C(1)	117.985	C (8)
	-	1 H(15)	C(1 4]	1.102	C[1 0]	119.092	C(1 e)
	-	H(25)	N(11]	1.049	C(10]	118,314	C(23)
	-	H[27]	N(22)	1.047	C[12]	120.224	C[26]
	-	H(35)	N(34)	1.007	C[24]	116.692	C(26)
	-	H(7)	C(5)	1.114	C(1)	110.015	C[16]
	-	H[18]	C[5]	1.113	C(1)	111.301	H(7)
	-	H(28)	C[5]	1.113	C(1)	112.344	H(7)

Gambar 4 (a) Struktur geometri molekul $FMNH_2 + ASn$, (b) Koordinat internal Asn dan $FMNH_2$

	Atom	Bond Atom	Boind Length	Angle Atom	First Angle	Third Atom
\bigcirc	C (8)		-	-	-	-
hundren that	C[10]	C(9)	1.414	-	-	-
len ra	C C[2]	CISI	1.392	C(10)	117.653	-
	a N(9)	C(8)	1.445	C(10)	116.162	C(2)
(HZ) (⁴ ¹ / ₂) (⁴ / ₂)	C[12]	N(9)	1.412	C(8)	124.418	cng
	C[23]	C[12]	1.377	N(9)	117.566	C(8)
	O N(22)	C[12]	1.412	C[23]	117.880	N(9)
	C N[11]	C(10)	1.403	C(8)	118.883	N(9)
	C (14)	c[n o]	1.392	C(8)	120.776	N[11]
	C[24]	C(23)	1.477	C[12]	120.745	N(11]
	- C[1]	C[2]	1.411	C[8]	122.152	C[10]
	C[16]	C[14]	1.408	C(10)	121.052	C(8)
T T T Y I	C[26]	N[22]	1.371	C[12]	123.476	C[23]
	C N(34)	C[24]	1.369	C[23]	115.097	C[12]
	C [5]	C(1)	1.512	C(2)	117.671	C[16]
	C(19)	C[16]	1.511	C(1)	121.937	C[14]
	a C(13)	M(9)	1.479	C(8)	116.959	C[12]
	a 0(30)	C[24]	1.224	C[23]	124.586	N(34)
HOIL HOS	C 0[32]	C[26]	1.226	N(22)	122.465	N(34)
	C H(3)	C(2)	1.100	C(1)	117.421	C(8)
	a H[15]	C[14]	1.102	C[10]	118.882	C[16]
	a H(25)	N(11)	1.050	C(10)	118.294	C[23]
	O H[27]	N(22)	1.047	C[12]	120.414	C(26)
HZD STATE	a H(35)	N(34)	1.007	C(24)	116.708	C[26]
	a H(7)	C[5]	1.114	C(1)	110.145	C[16]
	- H[18]	C[5]	1.110	C(1)	114.195	H(7)
	a H(28)	C(5)	1.114	C(1)	109.848	H(7)
	- H(17)	C[1 3]	1.112	N(9)	109.983	C(12)

Gambar 5 (a) Struktur geometri molekul FMNH+ O_2 dan (b) Koordinat internalnya

~

Gambar 6 (a) Struktur geometri molekul FMNHOO⁻ + LysH ; (b) koordinat internalnya

HC20	Atom	Bond Atom	Bond Lengthi	Angle Atom	First Angle	Third A
HIZ7 0(32)	C[8]		-	-	-	•
НІЗЭД	a c[1ŋ	C(8)	1.414	-	-	•
C(13) NI22-10120	C (2)	C[8]	1.392	C[10]	117.913	-
L' HEL LICE	C C(1)	C(2)	1.410	C(8)	121.935	C(10
	C N(9)	C[8]	1.443	C(10)	115.980	C[2]
	C N(11)	C(10)	1.405	C(8)	119.010	N(9)
	C[12]	N(9)	1.410	C(8)	124.443	C(10
	C[13]	N(9)	1.479	C(8)	117.512	C(12
	C (14)	C[10]	1.391	C(8)	120.591	N(11
HIZE	C[16]	C[14]	1.407	C(10)	121.034	C(8)
	C (5)	C(1)	1.511	C(2)	119.440	clie
	C[19]	C(16)	1.511	C(1)	121.573	C[14
	C[23]	C[15]	1.376	N(9)	117.763	C[8]
	O N[22]	C(12)	1.412	C(23)	118.149	N(9)
H(18)	a (24)	C[23]	1.477	C[12]	120.576	N(II
ICT GE COLOR	C (26)	N(22)	1.370	C(12)	123.324	C[23
	a N(34)	C[24]	1.369	C(23)	115.016	C(12
in the second	C 0(30)	C[24]	1.224	C[23]	124.705	N[34
HUJI CIIS) HUJO	0 0[32]	C[26]	1.226	N(22)	122.469	N(34
HIZTE	C H(3)	C[2]	1.100	C(1)	117.915	C(8)
HI39	C H[7]	C(5)	1.113	C(1)	111.248	C[16
HIZU LIVE LIVE LIVE LIVE	O H(18)	C[5]	1.114	C(1)	110.126	H(7)
HI40) HIAO	O H(28)	C(5)	1.113	C(1)	112.287	H(7)
CD7 Lives	O H(25)	N(11)	1.049	C(1 0)	118.360	C[23
C(S)	O H(17)	C[13]	1.113	N(9)	109.099	C[12
HIAT HIAT HIA	a H(29)	C[13]	1.110	N(9)	112.003	H(17
1	a H(33)	C[13]	1.112	N(9)	110.294	H[17
	O H(15)	C[14]	1.101	C(10)	119.170	C(16

Gambar 7 Struktur geometri molekul FMNHOOH + RCOH; (b) Koordinat internalnya

-	Atom	Bond Atom	Bond Length	Angle Atom;	First Angle	Third Ato
\cap	- C(8)	-		•	-	
	a c(10)	C[8]	1.393	-	-	-
	C(2)	C(8)	1.408	C(10)	115.406	
OB-THE ALL	C C(1)	C(2)	1.427	C(8)	122.927	C(10)
	C N(9)	C[8]	1.422	C[10]	118.103	C[2]
	CI N(11)	C(10)	1.452	C(8)	120.118	N(9)
00 .	C[12]	N(9)	1.404	C(8)	125.122	C(10)
	C (13)	N(9)	1.492	C(8)	121.490	C[12]
HIS I	C[14]	C(10)	1.379	C(8)	123.425	N(11]
	C[16]	C(14)	1.365	C[10]	120.377	C(8)
	O C[5]	C(1)	1.512	C[2]	121.288	C[16]
Rent Contraction Contraction	C [19]	cliel	1.480	C(I)	123.428	C[14]
	a C[23]	C[12]	1.375	M(9)	115.747	C[8]
	C N(22)	C[12]	1.361	C[23]	121.676	N(9)
	C (24)	C[23]	1.430	C(12)	118.921	N(11)
	C (26)	N(22)	1.376	C[12]	123.346	C(23)
	CI N(34)	C[24]	1.305	C[23]	113.504	C(12)
	C 0(30)	C[24]	1.243	C[23]	125.652	N(34)
	0 0(32)	C[26]	1.282	N(22)	125.218	N(34]
	C H(3)	C[2]	1.138	C(8)	117.923	C(1)
	G H(7)	C(5)	1.155	C(1)	103.409	C(2)
	G H(18)	C[5]	1.153	C(1)	110.460	H(7)
л \ А .а	G H[28]	C[5]	1.105	C[1]	105.012	H[7]
	a H(25)	N[11]	1.023	C(10)	119.744	C[23]
	G H(17)	C[13]	1.136	N(3)	114.307	C[1 2]
HOI U	C H(29)	CU 31	1.122	N(9)	113.125	H(17)
	C H(33)	C[1 3]	1.100	N(9)	104.524	H(17)
	a H(15)	C[1-4]	1.036	C(10)	121.451	c(រត

Gambar 8 Struktur geometri molekul tereksitasi FMNHOH*; (b) Koordinat internalnya

B. Analisa Data

Hasil dinamika molekul FMNH2 + ASn diperlihatkan pada Gambar 9

Gambar 9: Energi potensial fungsi waktu FMNH + Asn

Gambar 9 memperlihatkan setiap interaksi substrat-substrat FMNH₂, dengan dudukan aktif LBPP yaitu Asn diikuti dengan perubahan konformasi (geometri) sehingga mengubah panjang ikatan susunan atom-atom yang selanjutnya

menyebabkan perubahan energi potensial terhadap waktu. Perubahan energy potensial rata-rata terhadap fungsi waktu dapat dihitung yaitu sebesar 218 kkal/mol atau 9,45 eV (1 eV = 23,06035 kkal/mol).

Hasil dinamika molekul FMNH+O2 diperlihatkan pada Gambar 10

Gambar 10. Energi potensial molekul FMNH+O2

Gambar 10 memperlihatkan setiap interaksi substrat-substrat FMNH^{\circ} dengan O₂ diikuti dengan perubahan konformasi (geometri) sehingga mengubah panjang ikatan susunan atom-atom yang selanjutnya menyebabkan perubahan energi potensial terhadap waktu. Perubahan energy potensial rata-rata terhadap fungsi waktu dapat dihitung yaitu sebesar 279 kkal/mol atau 12,11 eV.

Hasil dinamika molekul reaksi FMNHOO⁻ + LysH diperlihatkan pada Gambar 11

Gambar 11. Energi potensial fungsi waktu FMNHOO + LysH

Gambar 11 memperlihatkan setiap interaksi substrat-substrat FMNHOO⁻ dengan dudukan aktif LBPP yaitu LysH diikuti dengan perubahan konformasi (geometri) sehingga mengubah panjang ikatan susunan atom-atom yang selanjutnya menyebabkan perubahan energi potensial terhadap waktu. Perubahan energy potensial rata-rata terhadap fungsi waktu dapat dihitung yaitu sebesar 339 ,66 kkal/mol atau 14,73 eV.

Hasil dinamika molekul reaksi FMNHOOH + RCOH diperlihatkan pada Gambar 12

Gambar 12. Energi potensial fungsi waktu FMNHOOH + RCOH

Gambar 12 memperlihatkan setiap interaksi substrat-substrat FMNHOOH dengan RCOH diikuti dengan perubahan konformasi (geometri) sehingga mengubah panjang ikatan susunan atom-atom yang selanjutnya menyebabkan perubahan energi potensial terhadap waktu. Perubahan energy potensial rata-rata terhadap fungsi waktu dapat dihitung yaitu sebesar 234, 72 kkal/mol atau 10,18 eV.

Hasil dinamika molekul keadaan eksitasi FMNHOH* diperlihatkan pada Gambar

Gambar 13. Energi potensial fungsi waktu molekul eksitasi FMNHOH*

Gambar 13 memperlihatkan pembentukan molekul keadaan eksitasi FMNHOH*. Setiap interaksi dengan molekul lain juga diikuti dengan perubahan konformasi (geometri) sehingga mengubah panjang ikatan susunan atom-atom yang selanjutnya menyebabkan perubahan energi potensial terhadap waktu. Perubahan energy potensial rata-rata terhadap fungsi waktu dapat dihitung yaitu sebesar 280 kkal/mol atau 10,84 eV. Berdasarkan hasil simulasi dinamika molekul yang telah diperlihatkan dalam Gambar 8 sampai 13, dapat dibuat diagram tingkat energy dari bakteri bioluminisensi yang diperlihatkan pada Gambar 14..

Gambar 14. Model tingkat energi aktivasi bakteri luminisensi berdasarkan dinamika molekul pada pusat reaksi.

Pembentukan keadaan eksitasi dapat dijelaskan berdasarkan Gambar V.12. Pengikatan FMNH₂ dengan sisi aktif Asn menyebabkan molekul memiliki energy potensial rata-rata sebesar 218 kkal/mol atau 9,45 eV. Selanjutnya oksidasi dengan molekul O₂, pusat reaksi mengalami keadaan aktifnya dengan energi aktivasi $E_a = 61$ kkal/mol atau 0,65 eV. Pengikatan selanjutnya dengan sisi aktif LysH menambah keadaan aktif pusat reaksi dengan energy aktivasi tambahan sebesar 60 kkal/mol atau sebesar 0,60 eV. Penambahan substrat RCOH menyebabkan terjadi penurunan energy potensial rata-rata pusat reaksi untuk secara secara spontan meluruh melepaskan RCOOH sehingga terbentuk keadaan eksitasi dengan energi aktivasi sebesar 16 kkal/mol atau 0,69 eV.

C. Pembahasan

Hasil dinamika molekul pembentukan keadaan eksitasi pada bakteri Photobacterium phosphoreum diperoleh energy aktivasi keadaan eksitasi adalah sebesar 16 kkal/mol atau 0,69 eV. Hasil ini berbeda sedikit dengan hasil pengukuran dimana diperoleh besar energy aktivasi keadaan eksitasi adalah 0,82 eV (Arief & Ratnawulan, 2006). Perbedaan hasil pehitungan dengan hasil pengukuran adalah sebesar 0,11 eV. Dengan kata lain terdapat kesalahan perhitungan sebesar 15 %.

Kesalahan yang cukup besar ini diduga disebabkan oleh kurang memperhitungkan jarak antar dua molekul seperti penambahan molekul FMNH₂ dengan molekul Asn. Jarak pengikatan yang terlalu jauh menyebabkan sulitnya molekul berinteraksi satu sama lain. Penyebab yang lain adalah molekul FMNH₂ yang digunakan dalam simulasi ini agak berbeda jenisnya dengan molekul FMNH₂ yang dipunyai oleh bakteri. Walau demikian dapat disimpulkan bahwa perubahan energi aktivasi pembentukan keadaan eksitasi yang diperoleh secara komputasi mendekati nilai perubahan energi aktivasi yang diperoleh secara eksperimen berdasarkan analisis karakteristik fisis pemancaran cahaya.

Beberapa aspek dinamika molekul yang dapat dijelaskan adalah setiap interaksi substrat-substrat FMNH₂, O₂, dan RCOH dengan dudukan aktif LBPP yaitu Asn dan Lys diikuti dengan perubahan konformasi (geometri) sehingga mengubah panjang ikatan susunan atom-atom yang selanjutnya menyebabkan perubahan energi potensial terhadap waktu. Perubahan konformasi ini dapat diinterpretasi bahwa selama reaksi, atom-atom berinteraksi satu sama lain sehingga gaya aksi akan mengubah posisi atom-atom terhadap yang lainnya sehingga akan mengubah struktur geometrinya. Bukti perubahan konformasi dari luciferase selama reaksi bioluminisensi juga dilaporkan oleh Li dan Meighen (1994).

BAB V. KESIMPULAN DAN SARAN

A. Kesimpulan

Dalam penelitian ini telah dikaji energy aktivasi pusat reaksi bakteri bioluminisensi *Photobacterium phosphoreum* melalui kajian dinamika molekul menggunakan *software* Chem3D. Karakteristik energi aktivasi dan urutan reaksi LBPP memperlihatkan bahwa pengikatan FMNH₂ dengan sisi aktif Asn menyebabkan molekul memiliki energy potensial rata-rata sebesar 218 kkal/mol atau 9,45 eV. Selanjutnya oksidasi dengan molekul O₂, pusat reaksi mengalami keadaan aktifnya dengan energi aktivasi E_a = 61 kkal/mol atau 0,65 eV. Pengikatan selanjutnya dengan sisi aktif LysH menambah keadaan aktif pusat reaksi dengan energy aktivasi tambahan sebesar 60 kkal/mol atau sebesar 0,60 eV. Penambahan substrat RCOH menyebabkan terjadi penurunan energy potensial rata-rata pusat reaksi untuk secara secara spontan meluruh melepaskan RCOOH sehingga terbentuk keadaan eksitasi dengan energi aktivasi sebesar 16 kkal/mol atau 0,69 eV.

Hasil analisis pengukuran energy aktivasi bakteri *Photobacterium phosphoreum* secara eksperimen memberikan besar energy aktivasi keadaan eksitasi adalah 0,82 eV. Perbedaan hasil penjukuran adalah sebesar 0,11 eV. Dengan kata lain terdapat kesalahan perhitungan sebesar 15 %.

B. Saran

Berdasarkan hasil penelitian ini, maka saran untuk penelitian lanjutan adalah:

- 1. Oleh karena masih terdapat kesalahan relatif yang cukup besar (KR>10%), maka penelitian lanjutan diperlukan dengan memperhitungkan jarak antar molekul yang berikatan.
- 2. Untuk memodelkan struktur FMNH₂, dibutuhkan informasi mengenai spesifikasiFMNH₂ yang dimiliki bakteri *Photobacterium phosphoreum*.

DAFTAR PUSTAKA

- Arif, I dan Ratnawulan, (2006), Determination of Site Residues Involved In The Emission of Visible Light F rom Photobacterium phosphoreum Bacteria. Seminar Internasional ICMN (20 November 2006) MIPA, ITB.
- Balny, C dan Hasting, J.W, (1975), Fluorescence and Bioluminescence of Bacterial Luciferase Intermediates, *Biochemistry*, 14, 4719 4723.
- Biron, K. (2003) : Fireflies, Dead Fish and a Glowing Bunny: a Primer on Bioluminescence, J.Bio.Teach., 1, 19 25.
- Choi, H., Tang, C.K., dan Tu, S.C.. (1995): Catalytically Active Forms of the Individual Subunits of Vibrio harveyi Luciferase and Their kinetic and Binding Properties, J. Biol. Chem., 270, 16813 – 16819.
- Fisher, A.J., Raushel, F.M., Baldwin, T.O., dan Rayment, I. (1995) : Three-Dimensional Structure of Bacterial Luciferase from Vibrio harveyi at 2.4 A Resolution, Abstract, *Biochemistry*, 34, 6581 – 6586.
- Fisher, A.J., Thompson, T.B., Thoden, J.D., Baldwin, T.O., dan Rayment, I. (1996): The 1,5 A Resolution Crystal Structure of Bacterial Luciferase in Low Salt Conditions, J. Biol. Chem., 271, 21956 – 219678
- Floyd, E R., (1997), Bermuda Triangle Continues to Mystify. The Augusta Chronicle Online <u>http://www.augustachronicle.com/stories/030297</u>.
- Flynn, G.C., Beckers, C.J.M., Baase, W.A., dan Dahlquist, F.W. (1993) : Individual Subunits of Bacterial Luciferase are Molten Globules and Interact with Molecular Chaperones, Proc. Natl. Acad, Sci, USA, 90, 10826 – 10830
- Garcia, Campana., Baeyens, AM., Zhang, X., Ales, F., and Gamiz, F., (2001), Unfamiliar thoug exciting analytical detection in flowing streams: chemiluminescence, Ars Pharmaceutica, Vol. 42(1), p.81-107
- Hasting, J.W. (1971) : Ventral Luminescence to Camouflage the Silhouete, Science, 173, 1016-1017.
- Hasting, J.W, Balny, C, Peuch, C.L, dan Douzou, P. (1973) : Spectral Properties of an Oxygenated Luciferase-Flavin Intermediate Isolated by Low-Temperature Chromatography, *Proc.Nat.Acad. Sci.USA*, 70, 3468 3472.
- Holt, J.G., Krieg, N.R., Sneath, P.H.A., Staley, J.T., dan Williams, S.T. (1994) : Bergey's Manual of Determinative bacteriology, 9th Edition, Williams & Wilkins, USA.

- Kratasyuk., V.A, Asimbekova., E.N, and Vetrova., E.V, (2004), Enzyme-based biosensor based on bacterial bioluminescence for environmental monitoring, 13 th International Symposium on Bioluminescence & Chemiluminescence Symposium Abstract.
- Kudryasheva N.S., Shalayeva E.V., Zadorochnaya E.N., Stom D.J., Kratasyuk V.A., and Balayan A.E.,(1994), Patterns of bacterial bioluminescence inhibition in vitro by quinones and phenols-component of sewage, Biofizika Vol. 39, p.455-464.
- Kudryasheva N.S., Nemtseva, E.V., and Kirillova, T.N., 2004, Exogenous compounds in studying the mechanisms of electron-excited state formation in bioluminescence, Biopolymers, Vol.74, p.100-104.
- Kruse, M, dan Boyle, R. (2000) : <u>http://library.thinkquest.org/COO5358</u> index2.htm? tqskip1=1&tqtime=0429.
- Kurfurst, M., Ghisla, S., dan Hasting, J.W. (1984) : Characterization and Postulated Structure of The Primary Emitter in The Bacterial Luciferase Reaction, *Proc.Natl.Acad.Sci.USA*, 81, 2990 - 2994.
- Lee, J.D.J., O'Kane., dan Gibson., B.G. (1988) : Dynamic Fluorescence Properties of Bacterial Luciferase Intermediates, *Biochemistry*, 25, 8062 8067
- Madden, D., and Lidesten, B.M., (2001), Bacterial illumination; culturing luminous bacteria, Bioscience Explained, Vol.1(1Macheroux, P., Ghisla, S., dan hasting, J.W. (1993): Spectral Detection of an Intermediate Preceding The Excited State in The Bacterial Luciferase Reaction, *Biochemistry*, 32, 14183 14186.
- Matheson, I.B.C., Lee, J., dan Muller, F. (1981) : Bacterial Bioluminescence: Spectral Study of The Emitters in The In Vitro Reaction, *Proc.Natl.Acad.Sci.USA*, 78, 948 952.
- Meighen, E.A., dan Bartlet, I. (1980) : Complementation of Subunits from Different Bacterial Luciferases ; Evidence for The Role of The β Subunit in The Bioluminescent Mechanism, J.Biol.Chem, 255, 11181 -11187.
- Meyer-Rochow, V.B. (2001) : Light of My Life-Messages in The Dark. Biologist (London) 48, 163 165.
- Swanson, R., Weaver, L.H., Remingtong, S.J., Matthewsg, B.W., dan Baldwin, T.O. (1985): Crystals of Luciferase from Vibrio harveyi; A preliminary characterization, J.Biol.Chem, 260, 1287 - 1289.
- Tu, S.C. (1979) : Isolation and Properties of Bacterial Luciferase-Oxygenated Flavin Intermediate Complexed with Long-Chain Alcohols, *Biochemistry*, 79, 5940-5945.
- Pringgenies, D., Sastrodiharjo, S., Nganro, N.R., dan Aryantha, I.N., (2001), Bacteria symbiosis in luminous organ of the squid *Loligo* duvaucel and cuttlefish Sepia

esculenta, Phuket Marine Biology Centre (Thailand). Spec. Publ. Vol. 22. No.11, p.145-146

- Ratnawulan., Arif,I., Sukirno dan Loeksmanto,W. (2006a): Formation of Excitation Condition at *Photobacterium phosphoreum* That Isolated From The Indonesian marine Squid. Photochemistry and Photobiology American Society for Photobiology (submited)
- Ratnawulan., Arif,I., Sukirno dan Loeksmanto,W. (2006b) : Spectral Properties of Bacteria Symbiosis in Luminous Organ of The Squid Loligo Duvaceuli, *Journal* of Bioluminescence and Chemiluminescence (Accepted).
- Ratnawulan, Pringgenis, D., dan Arif, I. (2005) : Isolasi dan Identifikasi Bahan Aktif Penyebab Pemancaran cahaya Pada Bakteri Photobacterium phosphoreum yang di isolasi dari Cumi laut Indonesia, J. Makara Seri Sains, Vol. 9(1), FMIPA Universitas Indonesia.
- Ratnawulan., Papilaya, E., Arif, I., Sukirno dan Loeksmanto, W. (2004): Pola Dan Aktivitas Dari Bakteri Bioluminisensi Yang Diisolasi Dari Cumi-Cumi Laut Indonesia, The First, Jogya Regional Physics Conference, Proceedings, September 11, 2004.
- Ratnawulan, (2011), Pengaruh Logam Berat Terhadap Inhibisi dan Aktivitas Intensitas Bioluminisensi dari Bakteri, Prosiding Seminar nasional Fisika Universitas Andalas.
- Vervoort, J., Muller, F., O'Kane, D.J., Lee, J., dan Bacher, A. (1986(b)) : Bacterial Luciferase: A Carbon-13, Nitrogen-15, and Phosphorus-31 Nuclear Magnetic Resonance Investigation, *Biochemistry*, 25, 8067 -8075
- Vervoort, J., Muller, F, Lee, J., Van den Berg, W.A.M., dan Moonen, C.T.W. (1986 (a)) : Identifications of the True Carbon-13 Nuclear Magnetic Resonance Spectrum of The Stable Intermediate II in Bacterial Luciferase, *Biochemistry*, 25, 8062 -8067.
- Waddle, J., dan Baldwin, T..O. (1991) : Individual alpha and beta subunits of bacterial luciferase exhibit bioluminescence activity, *Biochem Biophys. Res. Commun*, 178, 1188-1193.

LAMPIRAN II CONTOH PERHITUNGAN

		E.		
Waktu	E.Total	Potensial	Temperat	u
0.002	-71.369	-71.371	0.00	
0.004	-69.824	-70.867	0.83	heating
0.006	-69.063	-70.539	1.18	heating
800.0	-68.527	-70.200	1.34	heating
0.010	-67.825	-69.503	1.34	heating
0.012	-67.201	-69.483	1.82	heating
0.014	-66.566	-69.369	2.24	heating
0.016	-65.989	-68.659	2.13	heating
0.018	-65.577	-68.941	2.69	heating
0.020	-64.842	-68.409	2.85	heating
0.022	-64.574	-68.393	3.05	heating
0.024	-63.843	-68.650	3.84	heating
0.026	-63.522	-67.883	3.48	heating
0.028	-63.349	-67.963	3.69	heating
0.030	-62.869	-68.152	4.22	heating
0.032	-62.277	-67.567	4.23	heating
0.034	-61.625	-67.755	4.90	heating
0.036	-61.196	-67.459	5.00	heating
0.038	-60.577	-66.766	4.94	heating
0.040	-60.162	-67.352	5.74	heating
0.042	-59.557	-66.882	5.85	heating
0.044	-59.165	-67.262	6.47	heating
0.046	-58.312	-67.121	7.04	heating
0.048	-58.076	-66.480	6.71	heating
0.050	-57.650	-66.277	6.89	neating
0.052	-57.285	-65.204	6.33	neating
0.054	-56.913	-64.619	6.16	neating
0.050	-55 800	-64.764	0.0J	heating
0.050	-55.099	-65.005	7 51	heating
0.060	-51 773	-65 312	0 12	heating
0.002	-54 022	-63 564	7 62	heating
0.004	-53 791	-64 222	9 34	heating
0.000	-53 250	-63 916	0.54 8 52	heating
0.000	-53 207	-63.510	8 28	heating
0.070	-52 778	-64 751	9 56	heating
0.072	-52.770	-63 932	9.00	heating
0.074	-52.003	-64 921	10 24	heating
0.078	-51 362	-64 829	10.76	heating
0.080	-51.502	-64 215	10.56	heating
0.082	-50 448	-63.298	10.26	heating
0.002	30.440	03.250	10.20	nearing

ł

のないですので

16.768	602.292	272.459	263.46
16.770	601.551	266.879	267.33
16.772	599.637	237.352	289.38
16.774	605.863	219.684	308.47
16.776	600.912	177.398	338.29
16.778	604.574	180.437	338.79
16.780	597.813	196.179	320.81
16.782	598.792	223.193	300.02
16.784	596.962	252.813	274.90
16.786	595.921	225.393	295.97
16.788	602.125	242.239	287.47
16.790	597.719	242.770	283.52
16.792	602.259	262.328	271.53
16.794	598.254	311.478	229.07
16.796	600.659	283.057	253.69
16.798	604.206	261.697	273.59
16.800	603.233	227.623	300.03
16.802	604.758	209.753	315.52
16.804	602.788	226.436	300.62
16.806	597.825	226.101	296.92
16.808	599.666	213.956	308.09
16.810	602.017	196.733	323.73
16.812	605.133	188.455	332.83
16.814	609.226	178.562	344.00
16.816	607.515	191.908	331.98
16.818	604.911	174.183	344.05
16.820	606.008	199.641	324.59
16.822	602.250	224.981	301.35
16.824	604.619	229.640	299.52
16.826	612.891	283.270	263.29
16.828	605.316	264.870	271.94
16.830	611.525	264.623	277.10
16.832	605.989	259.393	276.85
16.834	605.939	207.403	318.34
16.836	611.747	183.301	342.23
16.838	613.697	177.356	348.54
16.840	613.427	188.569	339.36
16.842	612.011	233.336	302.48
16.844	607.853	249.221	286.47
16.846	609.464	241.059	294.27
16.848	616.714	241.159	299.98
16.850	613.278	228.968	306.98
16.852	614.013	252.072	289.11

16,768	272,459
16,77	266,879
16,772	237,352
16,774	219,684
16,776	177,398
16,778	180,437
16,78	196,179
16,782	223,193
16,784	252,813
16,786	225,393
16,788	242,239
16,79	242,77
16,792	262,328
16,794	311,478
16,796	283,057
16,798	261,697
16,8	227,623
16,802	209,753
16,804	226,436
16,806	226,101
16,808	213,956
16,81	196,733
16,812	188,455
16,814	178,562
16,816	191,908
16,818	174,183
16,82	199,641
16,822	224,981
16,824	229,64
16,826	283,27
16,828	264,87
16,83	264,623
16,832	259,393
16,834	207,403
16,836	183,301
16,838	177,356
16,84	188,569
16,842	233,336
16,844	249,221
16,846	241,059
16,848	241,159
16,85	228,968
16,852	252,072

16.854	608.171	268.087	271.65
16.856	603.091	239.875	290.13
16.858	609.104	261.216	277.88
16.860	610.022	268.641	272.69
16.862	613.369	244.718	294.47
16.864	615.014	251.115	290.67
16.866	607.998	203.603	323.02
16.868	606.044	193.021	329.91
16.870	603.191	205.505	317.66
16.872	604.848	193.774	328.35
16.874	612.625	216.508	316.41
16.876	611.252	200.412	328.17
16.878	610.716	193.410	333.33
16.880	601.027	198.329	321.66
16.882	597.775	209.308	310.30
16.884	595.337	235.629	287.32
16.886	597.872	264.845	266.01
16.888	601.962	260.402	272.83
16.890	603.673	247.419	284.57
16.892	605.089	243.750	288.63
16.894	604.114	216.678	309.47
16.896	610.441	226.160	306.95
16.898	607.646	197.517	327.60
16.900	614.752	186.421	342.14
16.902	608.765	208.494	319.73
16.904	606.563	212.507	314.76
16.906	608.138	272.037	268.47
16.908	600.904	276.656	259.00
16.910	611.247	279.194	265.24
16.912	610.395	282.715	261.74
16.914	611.369	249.675	288.91
16.916	613.061	253.643	287.09
16.918	609.903	262.594	277.42
16.920	606.722	252.084	283.28
16.922	608.994	245.073	290.69
16.924	609.318	238.734	296.01
16.926	607.474	203.398	322.76
16.928	612.618	249.298	290.21
16.930	596.772	247.614	278.90
16.932	600.204	244.705	283.96
16.934	599.240	284.519	251.39
16.936	595.742	229.353	292.66
16.938	610.282	248.804	288.74

16,854	268,087
16,856	239,875
16,858	261,216
16,86	268,641
16,862	244,718
16,864	251,115
16,866	203,603
16,868	193,021
16,87	205,505
16,872	193,774
16,874	216,508
16,876	200,412
16,878	193,41
16,88	198,329
16,882	209,308
16,884	235,629
16,886	264,845
16,888	260,402
16,89	247,419
16,892	243,75
16,894	216,678
16,896	226,16
16,898	197,517
16,9	186,421
16,902	208,494
16,904	212,507
16,906	272,037
16,908	276,656
16,91	279,194
16,912	282,715
16,914	249,675
16,916	253,643
16,918	262,594
16,92	252,084
16,922	245,073
16,924	238,734
16,926	203,398
16,928	249,298
16,93	247,614
16,932	244,705
16,934	284,519
16,936	229,353
16,938	248,804

-

16.940	607.122	255.782	280.64		16,94	255,782
16.942	612.480	243.767	294.52		16,942	243,767
16.944	611.656	280.449	264.56		16,944	280,449
16.946	607.302	268.078	270.96		16,946	268,078
16.948	607.814	254.652	282.10		16,948	254,652
16.950	612.662	277.441	267.76		16,95	277,441
16.952	607.858	263.775	274.84	heating	16,952	263,775
16.954	611.652	254.629	285.19	heating	16,954	254,629
16.956	615.649	271.608	274.81	heating	16,956	271,608
16.958	608.850	194.872	330.67	heating	16,958	194,872
16.960	619.284	180.320	350.63	heating	16,96	180,32
16.962	614.516	176.951	349.51		16,962	176,951
16.964	617.047	124.412	393.50		16,964	124,412
16.966	622.717	176.731	356.24		16,966	176,731
16.968	616.639	171.422	355.63		16,968	171,422
16.970	621.904	203.626	334.11		16,97	203,626
16.972	622.201	273.064	278.88		16,972	273,064
16.974	620.192	261.500	286.51		16,974	261,5
16.976	621.448	253.311	294.06		16,976	253,311
16.978	621.311	248.333	297.92		16,978	248,333
16.980	616.578	213.685	321.82		16,98	213,685
16.982	618.615	213.506	323.59		16,982	213,506
16.984	618.134	241.663	300.71		16,984	241,663
16.986	617.858	200.643	333.26		16,986	200,643
16.988	624.919	254.730	295.70		16,988	254,73
16.990	616.072	249.934	292.46		16,99	249,934
16.992	620.358	252.174	294.09		16,992	252,174
16.994	622.136	320.717	240.77		16,994	320,717
16.996	616.738	286.757	263.58		16,996	286,757
16.998	623.977	294.964	262.81		16,998	294,964
17.000	618.126	285.258	265.89		17	285,258
17.002	620.983	250.000	296.33		17,002	250
17.004	615.873	231.233	307.24		17,004	231,233
17.006	615.054	248.377	292.89		17,006	248,377
17.008	609.551	220.695	310.61		17,008	220,695
17.010	614.611	239.168	299.89		17,01	239,168
17.012	612.757	252.159	288.04		17,012	252,159
17.014	614.163	215.210	318.67		17,014	215,21
17.016	621.992	272.100	279.48		17,016	272,1
17.018	610.249	238.519	296.93		17,018	238,519
17.020	619.025	229.136	311.43		17,02	229,136
17.022	610.930	236.940	298.73		17,022	236,94
17.024	613.311	193.760	335.13		17,024	193,76

17.026	615.331	217.094	318.10		17,026	217,094
17.028	613.722	246.281	293.50		17,028	246,281
17.030	615.932	245.926	295.55		17,03	245,926
17.032	614.726	262.411	281.42		17,032	262,411
17.034	611.780	283.743	262.03		17,034	283,743
17.036	607.187	248.373	286.61		17,036	248,373
17.038	614.716	249.254	291.92		17,038	249,254
17.040	610.033	235.693	299.01		17,04	235,693
17.042	618.728	213.239	323.89		17,042	213,239
17.044	617.937	260.836	285.24		17,044	260,836
17.046	613.466	238.969	299.14		17,046	238,969
17.048	616.934	236.437	303.93		17,048	236,437
17.050	611.607	229.778	304.99		17,05	229,778
17.052	611.324	207.132	322.86		17,052	207,132
17.054	612.735	228.538	306.89		17,054	228,538
17.056	607.588	227.636	303.50		17,056	227,636
17.058	607.396	229.157	302.13		17,058	229,157
17.060	606.777	244.009	289.77		17,06	244,009
17.062	602.732	263.537	270.94		17,062	263,537
17.064	602.346	243.043	287.00		17,064	243,043
17.066	604.629	244.091	287.99		17,066	244,091
17.068	604.542	228.595	300.30		17,068	228,595
17.070	608.265	221.781	308.71		17,07	221,781
17.072	609.384	253.798	284.03		17,072	253,798
17.074	605.562	260.002	276.02		17,074	260,002
17.076	612.270	288.314	258.77		17,076	288,314
17.078	608.401	295.715	249.76		17,078	295,715
17.080	610.515	299.965	248.06		17,08	299,965
17.082	610.577	288.058	257.62		17,082	288,058
17.084	609.839	264.011	276.24	heating	17,084	264,011
17.086	611.158	249.322	289.02	heating	17,086	249,322
17.088	611.320	252.578	286.55	heating	17,088	252,578
17.090	611.420	268.745	273.72	heating	17,09	268,745
17.092	609.775	259.608	279.70	heating	17,092	259,608
17.094	612.143	240.145	297.14	heating	17,094	240,145
17.096	613.377	219.946	314.26	heating	17,096	219,946
17.098	615.633	200.675	331.46	heating	17,098	200,675
17.100	617.600	218.108	319.10		17,1	218,108
17.102	613.598	240.724	297.84		17,102	240,724
17.104	611.703	236.672	299.56		17,104	236,672
17.106	614.253	243.670	296.01		17,106	243,67
17.108	613.087	233.235	303.42		17,108	233,235
17.110	618.574	221.873	316.87		17,11	221,873

17.112	619.767	241.981	301.77		17,112	241,981
17.114	618.649	235.313	306.20		17,114	235,313
17.116	619.016	226.652	313.41		17,116	226,652
17.118	621.963	218.705	322.11		17,118	218,705
17.120	617.369	180.250	349.16		17,12	180,25
17.122	618.528	158.873	367.16		17,122	158,873
17.124	617.741	167.857	359.36		17,124	167,857
17.126	615.933	157.129	366.48		17,126	157,129
17.128	622.463	184.121	350.14		17,128	184,121
17.130	621.010	216.153	323.39		17,13	216,153
17.132	621.909	215.470	324.65		17,132	215,47
17.134	624.087	277.145	277.13	cooling	17,134	277,145
17.136	618.841	277.365	272.76		17,136	277,365
17.138	621.226	267.767	282.33		17,138	267,767
17.140	623.119	266.074	285.20		17,14	266,074
17.142	620.821	229.103	312.89		17,142	229,103
17.144	623.236	246.030	301.30		17,144	246,03
17.146	620.846	273.854	277.17		17,146	273,854
17.148	617.821	267.762	279.62		17,148	267,762
17.150	621.434	266.194	283.76		17,15	266,194
17.152	619.337	249.309	295.57		17,152	249,309
17.154	619.999	198.947	336.32		17,154	198,947
17.156	623.472	218.284	323.65		17,156	218,284
17.158	618.865	204.691	330.83		17,158	204,691
17.160	620.102	197.278	337.74		17,16	197,278
17.162	624.256	247.228	301.16		17,162	247,228
17.164	619.285	230.555	310.51		17,164	230,555
17.166	624.853	267.692	285.29		17,166	267,692
17.168	619.799	281.580	270.16		17,168	281,58
17.170	621.651	264.001	285.68		17,17	264,001
17.172	623.805	269.688	282.86		17,172	269,688
17.174	622.425	259.640	289.78		17,174	259,64
17.176	622.576	253.830	294.54		17,176	253,83
17.178	623.697	267.252	284.72		17,178	267,252
17.180	623.449	255.440	293.96		17,18	255,44
17.182	624.844	240.015	307.39		17,182	240,015
17.184	625.460	234.802	312.05		17,184	234,802
17.186	624.563	173.882	359.99		17,186	173,882
17.188	628.708	153.166	379.85		17,188	153,166
17.190	627.869	157.590	375.65		17,19	157,59
17.192	627.307	164.913	369.35	cooling	17,192	164,913
17.194	628.727	235.647	313.98	cooling	17,194	235,647
17.196	623.217	277.592	276.08	cooling	17,196	277,592

17.198	622.712	284.756	269.95	cooling	17,198	284,756
17,200	620.478	276.302	274.92	cooling	17,2	276,302
17.202	620.815	254.091	292.93		17,202	254,091
17.204	621.954	236.746	307.69		17,204	236,746
17.206	623.280	244.599	302.48		17,206	244,599
17.208	624.533	238.308	308.51		17,208	238,308
17.210	626.254	236.738	311.13		17,21	236,738
17.212	622.623	233.627	310.72		17,212	233,627
17.214	623.487	217.219	324.52		17,214	217,219
17.216	624.209	211.218	329.89		17,216	211,218
17.218	625.591	201.947	338.39		17,218	201,947
17.220	626.032	217.342	326.45	cooling	17,22	217,342
17.222	623.221	242.228	304.33	cooling	17,222	242,228
17.224	620.910	275.044	276.27	cooling	17,224	275,044
17.226	618.678	278.499	271.73	cooling	17,226	278,499
17.228	619.399	276.845	273.62		17,228	276,845
17.230	621.122	281.862	270.99		17,23	281,862
17.232	620.458	247.215	298.14		17,232	247,215
17.234	619.666	237.088	305.59		17,234	237,088
17.236	615.895	215.753	319.62		17,236	215,753
17.238	618.883	229.087	311.36		17,238	229,087
17.240	618.366	248.920	295.10		17,24	248,92
17.242	621.905	264.778	285.26		17,242	264,778
17.244	623.492	252.470	296.36		17,244	252,47
17.246	623.325	235.735	309.60		17,246	235,735
17.248	623.948	233.840	311.61		17,248	233,84
17.250	619.574	222.285	317.34		17,25	222,285
17.252	621.768	277.354	275.11		17,252	277,354
17.254	613.205	277.851	267.87		17,254	277,851
17.256	616.717	289.862	261.08		17,256	289,862
17.258	612.634	281.296	264.66		17,258	281,296
17.260	616.715	234.036	305.67		17,26	234,036
17.262	621.188	223.659	317.54		17,262	223,659
17.264	620.153	200.903	334.89		17,264	200,903
17.266	626.988	195.950	344.30		17,266	195,95
17.268	621.819	186.358	347.83		17,268	186,358
17.270	625.273	194.596	344.01		17,27	194,596
17.272	620.973	183.968	349.07		17,272	183,968
17.274	626.789	191.561	347.65		17,274	191,561
17.276	623.009	197.404	339.96	cooling	17,276	197,404
17.278	623.114	181.281	352.92	cooling	17,278	181,281
17.280	622.640	198.010	339.18	cooling	17,28	198,01
17.282	617.930	179.537	350.18	cooling	17,282	179,537

17.284	624.698	224.605	319.58	cooling	17,284	224,605
17.286	620.527	274.174	276.66	cooling	17,286	274,174
17.288	625.974	303.360	257.69	cooling	17,288	303,36
17.290	624.298	348.359	220.41	cooling	17,29	348,359
17.292	621.644	334.305	229.52		17,292	334,305
17.294	622.982	317.093	244.34		17,294	317,083
17.296	622.715	272.838	279.47		17,296	272,838
17.299	620.859	239.203	304.86		17,298	239,203
17.300	619.409	200.528	334.59		17,3	200,528
17.302	622.866	216.386	324.69		17,302	216,386
17.304	617.211	239.892	301.39		17,304	239,892
17.306	618.096	271.591	276.78		17,306	271,591
17.308	618.528	321.145	237.54		17,308	321,145
17.310	616.414	301.909	251.22		17,31	301,909
17.312	620.239	300.473	255.42		17,312	300,473
17.314	619.166	267.259	281.09		17,314	267,259
17.316	620.806	239.844	304.30		17,316	239,844
17.318	621.649	213.047	326.38		17,318	213,047
17.320	622.428	207.128	331.73		17,32	207,128
17.322	620.584	207.126	330.26		17,322	207,126
17.324	622.079	217.546	323.13		17,324	217,546
17.326	622.519	248.349	298.88		17,326	248,349
17.328	616.674	225.498	312.46		17,328	225,498
17.330	624.880	244.862	303.55		17,33	244,862
17.332	618.810	221.258	317.55		17,332	221,258
17.334	621.725	209.443	329.32		17,334	209,443
17.336	621.290	231.280	311.53		17,336	231,28
17.338	618.276	237.416	304.22		17,338	237,416
17.340	617.694	262.268	283.90		17,34	262,268
17.342	614.975	287.234	261.79		17,342	287,234
17.344	612.275	280.071	265.36		17,344	280,071
17.346	611.631	255.381	284.56		17,346	255,381
17.348	616.958	245.866	296.42		17,348	245,866
17.350	612,947	205.770	325.24		17,35	205,77
17.352	620.285	202.363	333.82		17,352	202,363
17.354	619.675	209.746	327.44		17,354	209,746
17.356	618.334	189.376	342.64		17,356	189,376
17.358	620.629	209.505	328.39		17,358	209,505
17.360	620.266	223.970	316.55		17,36	223,97
17.362	617.974	202.028	332.25		17,362	202,028
17.364	619.976	221.652	318.17		17,364	221,652
17.366	616.130	224.263	313.01		17,366	224,263
17.368	616.409	221.827	315.18		17,368	221,827

17.370	617.562	236.222	304.60		17,37	236,222
17.372	613.196	211.923	320.53		17,372	211,923
17.374	615.378	216.734	318.43		17,374	216,734
17.376	614.776	242.222	297.59		17,376	242,222
17.378	613.664	250.595	290.01		17,378	250,595
17.380	613.958	273.203	272.19		17,38	273,203
17.382	614.582	270.177	275.10		17,382	270,177
17.384	612.517	221.578	312.27		17,384	221,578
17.386	614.076	226.734	309.40		17,386	226,734
17.388	607.851	225.832	305.15		17,388	225,832
17.390	604.774	201.444	322.17		17,39	201,444
17.392	605.508	228.315	301.29		17,392	228,315
17.394	602.066	215.486	308.79		17,394	215,486
17.396	609.104	241.313	293.78		17,396	241,313
17.398	613.620	289.112	259.21		17,398	289,112
17.400	613.890	269.769	274.88		17,4	269,769
17.402	614.530	268.554	276.36		17,402	268,554
17.404	611.606	263.167	278.32		17,404	263,167
17.406	609.503	249.654	287.44		17,406	249,654
17.408	610.099	250.869	286.94		17,408	250,869
17.410	613.940	251.273	289.69		17,41	251,273
17.412	614.368	186.630	341.67		17,412	186,63
17.414	618.919	190.022	342.59		17,414	190,022
17.416	611.495	178.979	345.48		17,416	178,979
17.418	610.219	156.789	362.19		17,418	156,789
17.420	612.298	195.617	332.83		17,42	195,617
17.422	608.485	160.533	357.81		17,422	160,533
17.424	618.021	188.499	343.09	cooling	17,424	188,499
17.426	615.253	223.422	312.98	cooling	17,426	223,422
17.428	618.538	240.190	302.21	cooling	17,428	240,19
17.430	615.105	254.592	287.97	cooling	17,43	254,592
17.432	616.029	275.621	271.91	cooling	17,432	275,621
17.434	615.217	265.023	279.72		17,434	265,023
17.436	614.800	275.179	271.28		17,436	275,179
17.438	615.913	279.255	268.91		17,438	279,255
17.440	614.650	223.742	312.25		17,44	223,742
17.442	625.498	262.226	290.17		17,442	262,226
17.444	615.574	250.500	291.61		17,444	250,5
17.446	624.094	255.305	294.58		17,446	255,305
17.448	617.303	272.013	275.81		17,448	272,013
17.450	618.652	235.677	305.91		17,45	235,677
17.452	622.053	242.618	303.08		17,452	242,618
17.454	620.336	236.954	306.23		17,454	236,954

17.456	627.121	226.895	319.69		17,456	226,895
17.458	623.206	221.321	321.01		17,458	221,321
17.460	627.447	235.762	312.87		17,46	235,762
17.462	623.209	227.050	316.44		17,462	227,05
17.464	629.026	246.357	305.67		17,464	246,357
17.466	621.270	262.326	286.71		17,466	262,326
17.468	623.579	259.593	290.74		17,468	259,593
17.470	625.488	311.944	250.45		17,47	311,944
17.472	619.051	268.480	280.03		17,472	268,48
17.474	628.019	239.064	310.69		17,474	239,064
17.476	619.875	200.150	335.27		17,476	200,15
17.478	623.719	155.857	373.72		17,478	155,857
17.480	621.090	165.883	363.61		17,48	165,883
17.482	619.252	160.922	366.10		17,482	160,922
17.484	620.696	174.003	356.81	cooling	17,484	174,003
17.486	620.600	196.523	338.74	cooling	17,486	196,523
17.488	617.443	238.669	302.55	cooling	17,488	238,669
17.490	612.973	249.310	290.48	cooling	17,49	249,31
17.492	616.824	267.134	279.32	cooling	17,492	267,134
17.494	611.147	239.245	297.07	cooling	17,494	239,245
17.496	617.032	207.657	327.00	cooling	17,496	207,657
17.498	614.680	235.796	302.64	cooling	17,498	235,796
17.500	612.039	236.616	299.88	cooling	17,5	236,616
17.502	615.843	283.119	265.77	cooling	17,502	283,119
17.504	610.655	290.820	255.48		17,504	290,82
17.506	612.808	283.044	263.41		17,506	283,044
17.508	610.212	268.708	272.78		17,508	268,708
17.510	610.172	232.536	301.65		17,51	232,536
17.512	607.710	201.089	324.80		17,512	201,089
17.514	612.004	189.135	337.78		17,514	189,135
17.516	610.845	216.363	315.10		17,516	216,363
17.518	611.362	213.124	318.10		17,518	213,124
17.520	615.336	234.517	304.19		17,52	234,517
17.522	613.210	219.438	314.53		17,522	219,438
17.524	615.141	203.813	328.56		17,524	203,813
17.526	613.696	208.681	323.52		17,526	208,681
17.528	612.481	198.769	330.46		17,528	198,769
17.530	614.682	221.327	314.20		17,53	221,327
17.532	614.372	222.747	312.82		17,532	222,747
17.534	613.817	246.736	293.21	cooling	17,534	246,736
17.536	611.640	256.709	283.51		17,536	256,709
17.538	608.128	273.125	267.59		17,538	273,125
						000 700

17.542	605.632	258.047	277.64
17.544	610.346	271.629	270.56
17.546	610.774	252.805	285.94
17.548	616.265	254.593	288.89
17.550	615.392	221.065	314.98
17.552	614.634	194.318	335.74
17.554	614.671	183.146	344.69
17.556	613.088	195.929	333.22
17.558	613.271	198.538	331.28
17.560	615.511	232.280	306.11
17.562	614.222	260.514	282.53
17.564	612.899	247.854	291.59
17.566	617.348	257.333	287.57
17.568	613.912	209.829	322.77
17.570	617.588	195.248	337.35
17.572	618.458	209.255	326.86
17.574	618.263	245.138	298.04
17.576	617.133	274.452	273.72
17.578	617.605	298.935	254.54
17.580	616.965	271.201	276.19
17.582	618.323	244.306	298.75
17.584	617.442	225.242	313.28
17.586	615.359	183.031	345.33
17.588	616.454	197.821	334.39
17.590	609.999	192.731	333.30
17.592	615.849	233.722	305.23
17.594	613.883	258.279	284.05
17.596	616.601	264.703	281.09
17.598	616.248	266.878	279.07
17.600	614.803	242.389	297.47
17.602	616.143	219.364	316.94
17.604	613.518	208.548	323.48
17.606	616.024	228.584	309.48
17.608	615.400	242.194	298.11
17.610	621.847	290.282	264.84
17.612	613.375	269.055	275.03
17.614	619.424	242.420	301.14
17.616	615.526	216.427	318.79
17.618	616.650	185.111	344.70
17.620	618.330	227.061	312.53
17.622	613.491	249.514	290.74
17.624	614.389	266.045	278.25
17.626	608.702	259.090	279.26

17,542	258,047
17,544	271,629
17,546	252,805
17,548	254,593
17,55	221,065
17,552	194,318
17,554	183,146
17,556	195,929
17,558	198,538
17,56	232,28
17,562	260,514
17,564	247,854
17,566	257,333
17,568	209,829
17,57	195,248
17,572	209,255
17,574	245,138
17,576	274,452
17,578	298,935
17,58	271,201
17,582	244,306
17,584	225,242
17,586	183,031
17,588	197,821
17,59	192,731
17,592	233,722
17,594	258,279
17,596	264,703
17,598	266,878
17,6	242,389
17,602	219,364
17,604	208,548
17,606	228,584
17,608	242,194
17,61	290,282
17,612	269,055
17,614	242,42
17,616	216,427
17,618	185,111
17,62	227,061
17,622	249,514
17,624	266,045
17,626	259,09

17.628	609.892	236.905	297.93
17.630	608.144	220.434	309.69
17.632	612.269	213.077	318.86
17.634	611.477	215.019	316.68
17.636	614.141	215.821	318.17
17.638	614.735	239.877	299.43
17.640	612.362	233.255	302.82
17.642	616.436	246.850	295.21
17.644	611.939	222.992	310.68
17.646	617.956	209.935	325.92
17.648	616.643	244.869	296.96
17.650	616.564	253.174	290.27
17.652	617.507	291.915	260.07
17.654	615.403	271.274	274.88
17.656	617.490	255.104	289.46
17.658	616.414	236.919	303.13
17.660	616.352	212.165	322.85
17.662	616.199	206.013	327.64
17.664	615.170	200.027	331.60
17.666	618.753	227.750	312.32
17.668	618.444	230.041	310.25
17.670	617.510	227.129	311.83
17.672	616.268	185.388	344.17
17.674	617.720	189.247	342.25
17.676	614.734	201.993	329.69
17.678	615.533	247.746	293.78
17.680	616.288	307.580	246.59
17.682	613.254	283.967	263.02
17.684	620.194	292.111	262.06
17.686	612.218	240.053	297.28
17.688	618.689	231.298	309.44
17.690	614.507	221.366	314.03
17.692	613.257	202.914	327.77
17.694	614.451	215.112	318.98
17.696	614.303	261.449	281.85
17.698	612.654	274.542	270.07
17.700	610.307	245.846	291.12
17.702	616.636	251.118	291.97
17.704	608.522	187.533	336.27
17.706	615.653	194.223	336.63
17.708	607.577	183.117	339.05
17.710	609.306	164.099	355.62
17.712	610.542	202.305	326.09

l

17,628	236,905
17,63	220,434
17,632	213,077
17,634	215,019
17,636	215,821
17,638	239,877
17,64	233,255
17,642	246,85
17,644	222,992
17,646	209,935
17,648	244,869
17,65	253,174
17,652	291,915
17,654	271,274
17,656	255,104
17,658	236,919
17,66	212,165
17,662	206,013
17,664	200,027
17,666	227,75
17,668	230,041
17,67	227,129
17,672	185,388
17,674	189,247
17,676	201,993
17,678	247,746
17,68	307,58
17,682	283,967
17,684	292,111
17,686	240,053
17,688	231,298
17,69	221,366
17,692	202,914
17,694	215,112
17,696	261,449
17,698	274,542
17,7	245,846
17,702	251,118
17,704	187,533
17,706	194,223
17,708	183,117
17,71	164,099
17,712	202,305

	605 01 F	000			
17.714	605.918	222.852	305.98	17,71	.4 222,852
17.716	610.937	242.728	294.12	17,71	.6 242,728
17.718	607.914	254.790	282.07	17,71	.8 254,79
17.720	609.804	254.411	283.88	17,7	2 254,411
17.722	608.047	279.374	262.53	17,72	2 279,374
17.724	611.949	351.740	207.85	17,72	351,74
17.726	606.582	321.582	227.65	17,72	321,582
17.728	614.936	290.010	259.54	17,72	290,01
17.730	611.365	240.661	296.11	17,7	240,661
17.732	609.304	188.275	336.31	17,73	188,275
17.734	611.674	243.068	294.43	17,73	243,068
17.736	599.109	252.514	276.85	17,73	36 252,514
17.738	608.259	262.387	276.27	17,73	38 262,387
17.740	605.405	268.761	268.90	17,7	74 268,761
17.742	607.169	237.491	295.29	17,74	42 237,491
17.744	608.326	213.296	315.54	17,74	44 213,296
17.746	609.232	206.651	321.57	17,74	46 206,651
17.748	605.493	159.948	355.89	17,74	48 159,948
17.750	610.884	187.453	338.22	17,7	75 187,453
17.752	605.722	226.218	303.14	17,7	52 226,218
17.754	602.721	211.311	312.65	17,7	54 211,311
17.756	613.124	265.962	277.30	17,7	56 265,962
17.758	601.599	248.598	281.97	17,7	58 248,598
17.760	610.006	242.956	293.19	17,	76 242,956
17.762	605.406	254.674	280.16	17,7	52 254,674
17.764	604.584	200.692	322.62	17,7	64 200,692
17.766	610.089	202.439	325.62	17,7	66 202,439
17.768	614.596	233.092	304.74	17,7	68 233,092
17.770	611.981	218.969	313.93	17,	77 218,969
17.772	613.991	246.239	293.75	17,7	72 246,239
17.774	608.383	247.200	288.50	17,7	74 247,2
17.776	605.863	214.329	312.75	17,7	76 214,329
17.778	613.210	252.241	288.33	17,7	78 252,241
17.780	605.587	229.221	300.63	17,	78 229,221
17.782	612.895	201.455	328.65	17,7	82 201,455
17.784	611.373	233.267	302.02	17,7	84 233,267
17.786	608.691	218.680	311.53	17,7	86 218,68
17.788	610.032	268.032	273.18	17,7	88 268,032
17.790	608.220	310.355	237.93	17,	79 310,355
17.792	605.843	260.862	275.56	17,7	92 260,862
17.794	611.126	249.075	289.20	17,7	94 249,075
17.796	607.437	215.030	313.44	17,7	96 215,03
17.798	608.983	170.343	350.37	17,7	98 170,343

17.800	611.625	191.252	335.78
17.802	604.263	185.080	334.83
17.804	607.200	190.807	332.60
17.806	605.194	242.556	289.67
17.808	600.946	216.962	306.72
17.810	605.656	210.372	315.74
17.812	606.871	219.329	309.56
17.814	605.759	195.374	327.80
17.816	610.717	243.089	293.65
17.818	604.454	250.361	282.84
17.820	605.221	235.509	295.32
17.822	607.210	260.848	276.66
17.824	600.806	253.420	277.48
17.826	605.540	250.793	283.36
17.828	601.025	247.809	282.14
17.830	603.053	212.062	312.31
17.832	603.973	217.784	308.48
17.834	604.263	238.303	292.32
17.836	605.263	240.820	291.11
17.838	607.973	240.521	293.51
17.840	605.730	191.353	330.99
17.842	604.563	160.065	355.05
17.844	603.718	156.263	357.41
17.846	599.501	174.973	339.10
17.848	602.881	217.223	308.05
17.850	599.263	230.933	294.21
17.852	602.565	222.588	303.52
17.854	602.445	249.973	281.54
17.856	599.396	256.145	274.18
17.858	600.928	250.535	279.88
17.860	600.949	265.204	268.18
17.862	599.307	237.500	289.00
17.864	601.116	271.173	263.55
17.866	596.893	266.158	264.18
17.868	597.410	252.538	275.47
17.870	599.562	266.867	265.75
17.872	596.411	260.187	268.57
17.874	601.588	267.300	267.02
17.876	598.384	240.524	285.85
17.878	602.040	235.762	292.57
17.880	599.766	241.480	286.19
17.882	604.520	298.360	244.55
17.884	600.211	283.694	252.83

17,8	191,252	
17,802	185,08	
17,804	190,807	
17,806	242,556	
17,808	216,962	
17,81	210,372	
17,812	219,329	
17,814	195,374	
17,816	243,089	
17,818	250,361	
17,82	235,509	
17,822	260,848	
17,824	253,42	
17,826	250,793	
17,828	247,809	
17,83	212,062	
17,832	217,784	
17,834	238,303	
17,836	240,82	
17,838	240,521	
17,84	191,353	
17,842	160,065	
17,844	156,263	
17,846	174,973	
17,848	217,223	
17,85	230,933	
17,852	222,588	
17,854	249,973	
17,856	256,145	
17,858	250,535	
17,86	265,204	
17,862	237,5	
17,864	2/1,173	
17,866	266,158	
17,868	252,538	
17,8/	266,867	
17,872	260,187	
17,874	207,3	
17,876	240,524	
17,878	235,/62	
17,88	241,48	
17,882	298,36	
17,884	283,694	

17.886	604.067	269.806	267.00	heating	17,886	269,806
17.888	602.943	223.132	303.38	heating	17,888	223,132
17.890	603.714	185.908	333.73	heating	17,89	185,908
17.892	608.939	249.040	287.48		17,892	249,04
17.894	601.706	263.561	270.10	heating	17,894	263,561
17.896	612.673	293.617	254.85	heating	17,896	293,617
17.898	606.274	272.679	266.47	heating	17,898	272,679
17.900	611.953	227.182	307.34	heating	17,9	227,182
17.902	610.464	191.775	334.44	heating	17,902	191,775
17.904	612.197	171.978	351.64	heating	17,904	171,978
17.906	614.936	173.861	352.32		17,906	173,861
17.908	614.209	202.618	328.77		17,908	202,618
17.910	616.508	232.896	306.42		17,91	232,896
17.912	613.129	229.381	306.53		17,912	229,381
17.914	619.083	237.389	304.89		17,914	237,389
17.916	611.102	192.384	334.46		17,916	192,384
17.918	621.427	206.843	331.16		17,918	206,843
17.920	615.163	232.183	305.91		17,92	232,183
17.922	613.162	191.818	336.56		17,922	191,818
17.924	618.397	213.485	323.43		17,924	213,485
17.926	610.943	205.205	324.09		17,926	205,205
17.928	618.140	199.192	334.64		17,928	199,192
17.930	614.118	229.427	307.28		17,93	229,427
17.932	612.512	219.567	313.87		17,932	219,567
17.934	612.378	232.445	303.48		17,934	232,445
17.936	615.707	256.911	286.60		17,936	256,911
17.938	609.699	222.804	309.04		17,938	222,804
17.940	614.672	187.457	341.25		17,94	187,457
17.942	613.6/1	179.408	346.88		17,942	179,408
17.944	609.085	154.617	363.02		17,944	154,617
17.946	616.475	201.248	331.67	cooling	17,946	201,248
17.948	608.670	233.364	299.18.	cooling	17,948	233,304
17.950	614.250	223.742	311.93	cooling	17,95	223,742
17.952	614.U1Z	262.034	281.15	cooling	17,952	202,054
17.954	606 502	221.383	306.70	cooling	17,954	221,365
17.950	605 303	207.009	319.17	cooling	17,956	190 505
17.950	603.302	109.595	332.06	cooling	17,956	126 562
17.960	610 201	100.002	312.90	cooling	17,90	162 154
17.962	606 201	103.104	357.09	cooling	17,962	103,134
17.964	602 033	221 001	329.78	cooling	17,964	195,448
17.966	605 525	221.991	304.20	cooling	17,966	221,991
17.968	603.323	259./13	276.23	cooling	17,968	259,/13
17.970	0U1.2U1	221.0/8	279.19	cooling	17,97	251,678

and the second s

l

17.972	604.345	215.376	310.70	cooling	17,972	215,376
17.974	608.265	235.540	297.72	cooling	17,974	235,54
17.976	603.122	206.603	316.73	cooling	17,976	206,603
17.978	604.862	198.996	324.19	cooling	17,978	198,996
17.980	606.867	227.280	303.20	cooling	17,98	227,28
17.982	601.167	175.519	340.00	cooling	17,982	175,519
17.984	608.055	190.186	333.78	cooling	17,984	190,186
17.986	602.581	167.126	347.83	cooling	17,986	167,126
17.988	602.254	139.326	369.77	cooling	17,988	139,326
17.990	603.697	158.133	355.90	cooling	17,99	158,133
17.992	601.509	179.581	337.02	cooling	17,992	179,581
17.994	602.827	197.153	324.04	cooling	17,994	197,153
17.996	601.842	217.383	307.10	cooling	17,996	217,383
17.998	602.484	205.967	316.73	cooling	17,998	205,967
18.000	598.757	169.780	342.65	cooling	18	169,78
18.002	601.837	178.566	338.10	cooling	18,002	178,566
18.004	595.307	157.380	349.80	cooling	18,004	157,38
18.006	596.255	177.911	334.16	cooling	18,006	177,911
18.008	593.253	203.542	311.29	cooling	18,008	203,542
18.010	592.944	227.962	291.54	cooling	18,01	227,962
18.012	594.214	263.549	264.13	cooling	18,012	263,549
18.014	591.411	252.018	271.10	cooling	18,014	252,018
18.016	594.798	230.073	291.33	cooling	18,016	230,073
18.018	591.090	193.666	317.45	cooling	18,018	193,666
18.020	594.337	165.750	342.34	cooling	18,02	165,75
18.022	592.606	177.683	331.43	cooling	18,022	177,683
18.024	592.036	205.827	308.49	cooling	18,024	205,827
18.026	590.437	207.729	305.70	cooling	18,026	207,729
18.028	588.897	206.469	305.47	cooling	18,028	206,469
18.030	589.231	191.997	317.30	cooling	18,03	191,997
18.032	588.686	201.920	308.94	cooling	18,032	201,92
18.034	590.999	255.941	267.63	cooling	18,034	255,941
18.036	588.013	284.506	242.43	cooling	18,036	284,506
18.038	591.143	284.756	244.73	cooling	18,038	284,756
18.040	587.274	234.126	282.09		18,04	234,126
18.042	591.425	194.240	317.26		18,042	194,24
18.044	588.822	187.156	320.84		18,044	187,156
18.046	587.596	199.414	310.07		18,046	199,414
18.048	588.245	220.755	293.54		18,048	220,755
18.050	586.562	239.746	277.03		18,05	239,746
18.052	588.112	228.957	286.88		18,052	228,957
18.054	589.183	233.463	284.14		18,054	233,463
18.056	591.291	220.374	291.48		18,056	226,374