3rd International Conference on Technical and Vocational Education and Training (TVET)

Theme:
Technical and Vocational Education and Training for Sustainable Societies
FOREWARDS

This proceeding aims to disseminate valuable ideas and issues based on research or literature review in the field of vocational, technical, and engineering studies, which have been presented in the 3rd International Conference on TVET. This conference have taken place in Rocky Hotel Bukittinggi West Sumatra, October 16 and 17, 2015.

The theme of Conference focused on the perspective of technical and vocational education and training for sustainable society to face the challenges of 21st century, globalization era, and particularly Asian Economic Community. To overcome the challenges, we need the innovation and change in human resources development. Vocational and technical education and training have essential roles to change the world of education and work in order to establish sustainable society.

Undoubtedly, TVET need to enhance the quality of learning by developing various model of active learning, including learning in the workplace and entrepreneurship. Create innovation and applied engineering as well as information technology. Improvement of management and leadership in TVET Institution, and development of vocational and technical teacher education.

Many ideas and research findings have been shared and discussed in the seminar, more than 70 papers have been collected and selected through scholars, scientists, technologists, engineers, as well as teachers, professors, and postgraduate students who participated in the conference.

Five keynote speakers have taken part in the conference, namely Prof. D. Stein Ph.D (Ohio State University-USA), Prof. Yusuke Ono (Tottori University- Japan), and Prof. Nashruddin A. Rahim Ph.D (University of Malaya, Malaysia), and Prof. dr. Ali Gufron Ph.D (Directorate General of Human Resources Development in Higher Education-Indonesia), and Syahril Ph.D (Dean of Faculty Engineering UNP-Padang). They all have a great contribution for the success of the conference.

Finally, thank a million for all participants of the conference who supported the success of 3rd International Conference on TVET 2015. And most importantly, our gratitude to all scholars who support and tolerated our mistakes during the conference.

Padang, 9 Oktober 2015

Prof. Dr. Nizwardi Jalinus, M.Ed
Chair of Scientific Committee
TABLE OF CONTENTS

1. **PostgreSQL, A Platform for Multiple Sources Data Retrieval**
 Abdul Yadi .. 1

2. **Information Retrieval System For Research Abstract Using Genetic Algorithm With Jaccard Similarity Factor**
 Elin Haerani, Rubanam ... 8

3. **Addie Model Approach Through The Task Learning Course Of Knowledge In Textile Clothing Depateman Procedures State University Educational Field**
 Dina Ampera ... 15

4. **Role Of Information Technology In Education Entrepreneurship In Higher Education**
 Gunawan Ali, Wulan Andang Purnomo, Wahyu Prima .. 21

5. **Development Media Study Of Natural Culture Minangkabau With Kim Arga Budaya**
 .. 25

6. **Improving Quality Community-Based Education**
 Zonny Amanda Putra .. 32

7. **Study Of Student Learning Activities On The Subject Of Physics Using Cooperative Learning In State 3 Of Senior High Schools In Bungo**
 Despita, Agus Suparno ... 38

8. **The Role Of Locus Control And Learning Styles In The Development Of The Blended Learning Model At UNP**
 Z. Mawardi Effendi, Hansi Effendi, Hastria Effendi ... 42

9. **Learning Outcomes In Vocational Education: A Business Plan Development By Production-Based Learning Model Approach**
 Indrati Kusumaningrum, Hendra Hidayat, Ganefri, Sartika Anori, Mega Silfia Dewy 48

10. **Effect Of Social Network Of Adolescent Learning Behaviour**
 Ikhwansyah ... 61

11. **Implementation Of Media Interactive Learning Based Wlan Technology (Study At SMK Kampar)**
 Kori Cahyono .. 67

12. **Model Development Work-Based Learning The Course Of Blasting Mining Engineering Department**
 Murad ... 72

13. **Professional Development Of Vocational Teachers Padang Through Advanced Education and Training**
 Ramli ... 81

14. **Intelligent System Design "QAIS"Based On Artificial Intelligence At The University Of Muhammadiyah Riau LPMI**
 Resmi Darni .. 88

15. **Geographic Information System Design Shortest Route Location-Based Health Care Android**
 Rice Novita, Welita ... 93

16. **Implementation Of Green Productivity To Increase Productivity And Environmental Performance (Case Study At Sme Bowo)**
 Riko Ervil, Nesky Luciana ... 99

17. **Strategy Implementation Of Supervision In Vocational High School In Bungo, Jambi**
 Sayuti Hamzan, Eman Tu Ferli ... 103

18. **Learning Of Crystal Symmetry By Using 3Ds Max Software**
 Fadhilah ... 107

19. **Computer-Based Learning Media Development In Vocational High School**
 Baharuddin, Indra Daulay ... 113

20. **Development Of Blended Learning Model In Human-Computer Interaction At University**
 Faiza Rini, Ari Saiful Arifin Rahman ... 118
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.</td>
<td>Online Tracer Study Of Bung Hatta University</td>
<td>Karmila Suryani, Khairudin</td>
<td>125</td>
</tr>
<tr>
<td>22.</td>
<td>Identifying Initial Damage Of Palm Oil Screw Press Of Drive Shaft</td>
<td>Purwo Subekti, Eddy Elfiano, Legisnal Hakim</td>
<td>132</td>
</tr>
<tr>
<td>23.</td>
<td>Weather Stations Prototype To Flood Detection In High Rainfall Area</td>
<td>Yulastr, Era Madona, Lifwarda, Anggara Nasution</td>
<td>136</td>
</tr>
<tr>
<td>25.</td>
<td>English Specific Purposes</td>
<td>Elda Martha Suri</td>
<td>152</td>
</tr>
<tr>
<td>26.</td>
<td>Need Assessment By Nominal Group Technique Student Learning Programme</td>
<td>Syafiatun Siregar</td>
<td>155</td>
</tr>
<tr>
<td>27.</td>
<td>Vocational And Technical Teachers Educations</td>
<td>Ungsi, AOM</td>
<td>160</td>
</tr>
<tr>
<td>28.</td>
<td>Analysis Of Vocational Learning System In Department Of Education Building Technique</td>
<td>Kinanti Wijaya, Asri Lubis</td>
<td>162</td>
</tr>
<tr>
<td>29.</td>
<td>Learning Based On Student Thinking</td>
<td>Dedy Irfan</td>
<td>167</td>
</tr>
<tr>
<td>30.</td>
<td>Teaching And Learning Through The Virtual Laboratory</td>
<td>Aswardi</td>
<td>172</td>
</tr>
<tr>
<td>31.</td>
<td>Reforming Fishery Study Expertise Program Of Vocational High Schools (VHSS) Adapted To New Paradigm Of Fishery Resources Management</td>
<td>Asahan Pasaribu</td>
<td>176</td>
</tr>
<tr>
<td>32.</td>
<td>Application Information System Rental Facilities At The Universitas Lancang Kuningbased Online</td>
<td>Nurliana Nasution, Mhd. Arief Hasan, Yummastian</td>
<td>184</td>
</tr>
<tr>
<td>33.</td>
<td>An Improving Of The Soft Skills And Hard Skill Abilities For Vocational High Schools Students In Learning Process On Service Production Units</td>
<td>Adi Sutopo</td>
<td>188</td>
</tr>
<tr>
<td>34.</td>
<td>Biometric Application For Eyeiris’sdetection Based Artificial Neural Network Using Discrete Hopfield Algorithm</td>
<td>Dicky Nofriansyah, Haryadi, Amrizal</td>
<td>193</td>
</tr>
<tr>
<td>35.</td>
<td>The Effect Of Instructional Drill And Practice Method And Low Self-Efficacy Toward Fashion Drawing Achievement At SMK Negeri Medan Farihah</td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>36.</td>
<td>Study Of Ground Water Contamination By Leachate Around Air Dingin Landfill Padang Yaumal Arbi, Tri Padmi Damanhuri, Idris Maxdoni Kamil</td>
<td></td>
<td>204</td>
</tr>
<tr>
<td>37.</td>
<td>Service Excellence Competence Enhancement For Students Of Finance And Banking Diploma III Faculty Of Economics Uii To Increase Competitiveness Level To Face Asean Economic Community Aida Trisanty, Nurfauziah</td>
<td></td>
<td>214</td>
</tr>
<tr>
<td>38.</td>
<td>Need And Analysis Of Soft Skills For Students Of The Mechanical Engineering Department Of Vocational High School Suryo Hartanto, Syahron Lubis, Fahmi Rizal</td>
<td></td>
<td>220</td>
</tr>
<tr>
<td>39.</td>
<td>Environment Influence Toward Operational Performance In Handcraft Central Industry Silungkang Village Sawahlunto Rasidah Nasrah</td>
<td></td>
<td>225</td>
</tr>
<tr>
<td>40.</td>
<td>Optimizing The Personal Website Of The Publication Educator By Applying UML Erdisna, Muhammad Ikhas</td>
<td></td>
<td>228</td>
</tr>
</tbody>
</table>
Transient Response Study on Transformer Windings Under Impulse Voltage Stresses

Hendri Masdi¹, Rusnardi Rahmat²

¹,²Faculty Of Engineering, Padang State University, Indonesia

Abstract— The study reported in this paper was aimed to investigate transient response of power transformer when lightning current pass through its winding. Analysis of distribution voltage at the winding taps was done, both by experimental and numerical simulation, by applying IEC-71 standard current surge (8/20 µs impulse current and 1.2/50 µs impulse voltage). Transformer’s constants as: R, L, C were derived from the transformer construction, which consists of 9 winding layers at HV-side. The wave-shapes of the voltage across the winding sections were recorded. The response of the windings was then compared with results of a simulation using EMTDC/PSCAD. The simulation based on an RLC network model resulted in wave-shapes that are in good agreement to those of the experiment. Both results of the simulation and experiment show that the distribution of the impulse voltage across the windings is non linear, especially during the period of fraction of microseconds. Furthermore, results of the investigation show that a simple capacitance network model is sufficient for study of the impulse voltage distribution across transformer windings.

Keywords— Include Transient overvoltage, EMTDC/PSCAD, transformer model.

1. INTRODUCTION

Transient study in electric power system can nowadays be done by simulation with the help of software packages dedicated for that purpose, such as EMTDC/PSCAD and others. Studies that involve substation require a good skill and knowledge in how to model more or less correctly the equipment included in substation’s model. There has been a lot of discussion regarding transient model of substation’s main equipment, such as: power transformer, Surge Arrester and others.

So far, the transient model of a power transformer consists of a circuit of capacitance that represent the capacitance of the winding insulation to ground, and the inter-turn capacitance. To model properly a power transformer that could reproduce the phenomenon close to real situation is very important, especially if one wishes to study the stresses borne by the winding during occurrence of transient overvoltage [1,2,3].

To realize that goal, we experiments and simulation were conducted on a distribution power transformer whose capacity was: 100kVA, 20.000V/400V. To experimentally simulate a lightning current Surge Current Generator from Schaffner Type NSG 857 was utilized, which can produce surge current up to 7.5 kA of 8x20 microsecond.

In the experiment, current of 5 kA was injected to the transformer winding, and then the over voltage between the transformer HV-terminal and ground and also between the transformer conductor layer to ground were measured. From the measurement, a waveform and voltage distribution along the winding can then be obtained [6].

Further, simulations were conducted, by applying the same current waveform. The simulation was performed using the EMTDC/PSCAD; and the transformer constants included in the simulation have been derived from the physical dimension of the transformer winding [7].

2. TRANSFORMER CONSTRUCTION AND ITS CONSTANTS

Schematic drawing of the transformer investigated in the study can be seen in figure 1, where the HV-winding was constructed of 9 layers. The transformer was a three phase winding. In the experimental simulation, the surge current was injected to the tap 1 and the tap 9 connected to ground. These taps represent the HV-terminal and the neutral point of the transformer, respectively.

![Figure 1: Construction of the transformer](image)

(a) Transformer under study

(b) Inner construction of the transformer
The transformer’s constants have been calculated from the physical dimension. Each winding layer corresponds with one transformer winding segment of the transformer model, where uniformly distributed, so each layer can be represented by a lumped circuit component [4,5,6]. The inner-turn and winding-to-ground capacitance, inductance and resistance of transformer obtained from calculation based on physical dimension are shown in the table 1.

These transformer constants were calculated using the principle of transformer modeling as proposed in the reference [6].

<table>
<thead>
<tr>
<th>Conductor Layers (from-to)</th>
<th>Capacitance (pF)</th>
<th>Inductance (mH)</th>
<th>Resistance (Ohm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cs</td>
<td>Cg</td>
<td></td>
</tr>
<tr>
<td>L1,2</td>
<td>8,5.10^3</td>
<td>3,5.10^4</td>
<td>1,1</td>
</tr>
<tr>
<td>L2,3</td>
<td>8,7.10^3</td>
<td>3,7.10^4</td>
<td>1,1</td>
</tr>
<tr>
<td>L3,4</td>
<td>9,0.10^3</td>
<td>8,10^4</td>
<td>1,1</td>
</tr>
<tr>
<td>L4,5</td>
<td>9,2.10^3</td>
<td>3,4.10^4</td>
<td>1,1</td>
</tr>
<tr>
<td>L5,6</td>
<td>9,5.10^3</td>
<td>4,5.10^4</td>
<td>1,1</td>
</tr>
<tr>
<td>L6,7</td>
<td>9,7.10^3</td>
<td>4,2.10^4</td>
<td>1,1</td>
</tr>
<tr>
<td>L7,8</td>
<td>1,0.10^2</td>
<td>6,10^4</td>
<td>1,1</td>
</tr>
<tr>
<td>L8,9</td>
<td>1,02.10^4</td>
<td>4,8.10^4</td>
<td>1,1</td>
</tr>
</tbody>
</table>

3. CIRCUIT MODEL FOR EMTDC/PSCAD

In the numerical simulation, we applied the subroutine JMARTI SETUP where the transformer was considered as distributed and frequency-dependent parameters. The surge current used in the simulation was the type 15 of EMTDC/PSCAD.

In the simulation the following assumptions have also been adopted:

- The HV-winding under test was considered as isolated from the other two windings and from the LV-winding.
- The transformer was assumed as air-core transformer. This assumption was applied since the influence of iron only significant for the case of switching impulse.

In the study, the simulation was conducted using two type of circuit model; the first model included the transformer’s capacitances only, while in the second all transformers’ constants were taken into account. Figure 2 and figure 3 illustrate the transformer models 1 or 2 used in the simulation by EMTDC/PSCAD and figure 4 is the output from the system simulation.

Figure 2 : Model 1, consisting of transformer’s capacitances only.
(a) Simulation Model 1
(b) Schematics Model 1
Figure 3: Model 2, including all parameters R, L, C

(a) Simulation Model 2 and
(b) Schematics Model 2

Where:
- \(C_{g1}, C_{g2}, \ldots \): Capacitance between conductor layers to ground
- \(C_{s1}, C_{s2}, \ldots \): Capacitance between layers
- \(L_{11}, L_{12}, \ldots \): Inductance of each conductor layer
- \(R_{11}, R_{12}, \ldots \): Resistance of each conductor layer

Figure 4: Output Simulation

EMTDC/PSCAD Model 1, consisting of transformer’s capacitances only.

(a) Output Cs Simulation Model 1 and
(b) Output Cg Simulation Model 1

4. EXPERIMENTAL SETUP

The experimental measurement was carried out with help of the setup shown in figure 5. The surge current was generated from the generator “Shaffner NSG 587”, which can produce impulse current up to 5 kA peak value, with different waveform. In this simulation, we applied current waveform of 8/20\(\mu \)s.
The experiments were done by injecting current to the upper terminal of the transformer, and the lower terminal was grounded through a metal strip of copper. The voltages measured at the winding taps were recorded by PC, which was connected to the oscilloscope through GPIB card. During the test, the LV-winding was short-circuited and connected to ground, as well.

5. RESULTS

Results of experimental measurement shown in the figure 6 indicate the behavior of the transformer, when surge current is injected to the HV terminal (at layer 1).

The voltage measured at the conductor layers (L2, L5, L8) oscillate during the first 4 µs, where the highest voltage was at the layer L1 (the layer near to the transformer’s HV terminal, the curve not presented in the figure 5). After 6µs the voltage at the layer tends to be stabilised.

![Figure 5: Experimental Setup](image)

![Figure 6: Voltages at the layers L2, L5, L8 during 6 µs after current injection to the winding.](image)

![Figure 7: Comparison between experimental measurement and numerical simulation.](image)

The figure 7 shows comparison between experimental measurement and numerical simulation. As can be seen, the discrepancy between the curves is important at t ≈ 1 µs. The curve obtained from the experimental measurement decreased toward zero.

After t ≈ 1 µs, the simulation and experimental measurement curves were in good concordance that means the response of the transformer can be adequately simulated. The numerical simulation shown in the figure 5 was obtained by using the model 2. Simulation by using the model 1 was not presented in this report, it gave however similar characteristic.

Results of the study show that the numerical simulation could not follow the real phenomena at the beginning of transient period (t <1µs), where at this
time period the capacitances have important influence during transient.

As the capacitance at each layer applied in the EMTP simulation has been obtained through approximate calculation and also assumed as lumped component, the response at higher frequencies would not follow exactly the phenomena. This might be caused by stray capacitances of the layers to ground, which play an important role for higher frequencies. Experimental curves of the layers L1 up to L9, show a sharp decrease at $t \approx 1 \mu s$, which might eventually be due to reflection at ground terminal. Yet, this assumption is not very clear, and needs to be further investigated. The simulation curve shows in fact same decrease at that instance, but not very important.

From the comparison between experimental and numerical simulation it can be concluded that numerical calculation can simulate adequately transient characteristic of a transformer after some microseconds of surge current flowing through the winding. To simulate more or less precisely at $t \approx 0 - 1 \mu s$ proves to be difficult, since the estimation of the transformer capacitances could not be done precisely for higher frequency component of the surge currents.

However, from this study, it has been observed that the experimental measurements have given results, where the simulation curve is always higher than the measured ones. It means the simulation tends to result in more pessimistic values in overvoltage estimation.

Plot of voltage distribution at $t = 6 \mu s$, both of experimental and numerical simulation (model 1 and 2) is presented in the figure 8. As already known from theory, the voltage gradient at the upper turns (nearest to the HV terminal) will be the most important. Nearly 60% of the voltage is born by layer 1 and layer 2.

Again, the simulation curve indicates more severe situation compared to the real condition.

6. CONCLUSIONS

Transformer model used for transient condition is normally represented by its capacitance to ground, the value of which is so for given based on approximated value depending on the rated voltage and power capacity of transformer [6,8,9]. This very simple model can sufficiently represent the transformer when rough prediction on transient overvoltage due to lightning surge current is needed [7,11].

The study here presented shows that the more complete and detail model is sufficiently good for transient simulation. Somehow, the model could still not be quite precise when it concerns the first microseconds of the transient period. On the otherhand, after some microseconds the concordance between the simulation and measurement curves is good.

The information obtained from this study which can justify the estimation of transient overvoltage by numerical simulation, is the fact that it resulted in more pessimistic overvoltage values compared to the real condition [10].

From the study, it has been discovered that transformer capacitances, especially those of conduction layer to ground, had the most important role in numerical simulation. Our study shows that there is only small discrepancy of voltage values obtained by using the model 1 and model 2.

7. REFERENCES

About UNP ICTVET
This International Conference aims to create new ideas and innovation concerning Education and Training on Vocational and Engineering Studies. This Conference wishes to share various ideas on the basis of research findings, particularly in themes of:
1. Development of learning Model on TVET
2. Workplace learning and entrepreneurship
3. Innovation in applied engineering and information technology
4. Management and leadership on TVET
5. Vocational and Technical Teachers Education

Digest Submission
Digests must be original material and have not been previously presented or published. All materials should be electronically submitted in DOC/DOCX file through the conference website no later than Sept 15, 2015. Selected papers will be published in International Journal of Geometrical Scopus Indexed, GIF, Google Scholar, EBSCO, and Cengage Learning.

Submission contribution for review may include:
- Regular paper (max 6 pages)
- Short papers (work in progress) (2-4 pages)
- Extended abstract (2 pages)
- Posters (2 pages)

The camera ready paper should be in regular version (max 6 pages). Paper selected for publication in conference supporting journals should be extended to avoid duplication.

All topics are open to academic, research and industry contribution, including policy development, technical report, and research in progress.

UNP ICTVET 2015
3rd UNP International Conference on Technical and Vocational Education and Training (TVET)
Bukittinggi, Indonesia
Oct 16-17, 2015
Technical and Vocational Education and Training for Sustainable Societies

CALL FOR PAPERS

Venue
The Hills Bukittinggi Hotel & Convention
Jln. Laras Dr. Bandaro Bukittinggi 261-85
Phone: +6275233000 fax +6275223800
Website: www.thehillshotel.com

Registration Fee
International Presenter
75 US$
Indonesia Presenter
500,000 IDR
350,000 IDR (For Student)
Poster
250,000 IDR
Participant
200,000 IDR
100,000 IDR (For Student)

Method of Payment
Bank Remittance
International Participant/Local Participant
a/n Rahmadhanil
No Rek: 018616782781
Bank Negara Indonesia (BNI145 Cebarg UNP)

Important Dates
Abstract submission : July 23, 2015
Acceptance notification : August 1, 2015
Early bird registration : August 24, 2015
Full paper submission : Sept 15, 2015
Final Registration : Oct 9, 2015
Conference Days : Oct 16-17, 2015

Contacts
ICTVET Committee, Engineering Faculty
Universitas Negeri Padang
Jln. Prof. Dr. Hamid Aitraw Padang, 25131
Attn: Krismedinata: +62-82283366554
Rusnan Rahmat: +62-81364690484
Astrul Huda: +62-813 63 777 678
Rahmadhanil: +62-81287 63 280
Selvia Larose: +62-813 74 906 487
Phone: +62-751-7055644, +62-751-7053 3564
Facsimile: +62-751-7055644

E-mail: ic-tvet@unp.ac.id,
ic-tvetunp@gmail.com
Website: http://ictvet.unp.ac.id
Organizing Committee
Prof. Dr. Nizwardi Jalinus, M.Ed

Technical and Scientific Committee
Rusnardl Rahmat Putra, Ph.D
Krismadinata, Ph.D
Dr. Nuryhasan Syah Dt. Maruhun, M.Pd
Dr. Ridwan, M.Sc. Ed.

Keynote Speaker
Prof. Dr. M. Nasir
(Ministry of Research, Technology and Higher Education)

Prof. Nasrudin Abd. Rahim
(University of Malaya)

Prof. Chih-Taong Su, Ph.D
Koehyung University Taiwan

Syahril, Ph.D
(Dean of Engineering Faculty, Universitas Negeri Padang)

Contacts
ICTVET Committee, Engineering Faculty
Universitas Negeri Padang
Jln. Prof. Dr. Hemka Air Tawar Padang, 25131
Attn. Krismadinata : +62-8283666554
Rusnardl Rahmat : +62-8136480484
Aazru Huda : +62-813 63 777 678
Rehimdani : +62-81267 63 280
Selvia Larose : +62-813 74 906 487

Phone : +62-751-7055644, +62-751-7055884
Facsimile : +62-751-7055644
E-mail : ic-tvet@unp.co.id, ic-tvetunp@gmail.com
Website : http://ictvet.unp.ac.id

Venue
The Hills Bukittinggi Hotel & Convention
Jln. Laras Dt. Bandara Bukittinggi 26115
Phone : +6275235000 fax:+6275223800
Website : www.thehillhotel.com

Jam Gadang
Big Ben Tower is the name for the tower clock located in the center of Bukittinggi, West Sumatra, Indonesia. This clock has a tower with a large building on the four sides so-called Clock Tower, designation Minangkabau language meaning "big ben".

Lubang Jepang
Japan hole Bukittinggi (also spelled Japanese hole) is one of the historical attractions in the city of Bukittinggi, West Sumatra, Indonesia. Japan hole is a tunnel (bunker) protection built Japanese occupation army around 1942 for defense purposes.

Ngarai Sianok
Sianok Canyon is a steep valley (ravine) located in the border town of Bukittinggi, in the district IV Koto, Agam, West Sumatra. The valley is elongated and meandering as the southern boundary of the city of Koto Gadang to Nagari Sianok Anam Tribe, and ends in the district Palupuk. Sianok canyon has a very beautiful view and also became one of the flagship attraction provinces.